Everything you’'ve always wanted to know about confidence intervals
(CI = (estimator) £ (margin of error)
= (estimator) £ (critical value){standard error) )
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Everything you've always wanted to know about hypothesis testing

(Test Statistic* =

(estimator) ~ hypothesized value
)
standard error
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IMPORTANT FORMULAS

Chapter 3: Numerical Summaries of Data

Range = largest value — smallest value

Population variance:

_ Y- p)
o=
Samiple variance:
2o Yx— 5P

n-1

Coeflicient of variation:
CV= A

H
Z-5core:
="K

o
Interquartile range:
IQR = @, — Q, = tht'~d quartile - first quartiie
Lower outlier boundary:
Upper outlier houndary:
; +1.5IQR

Chapter 4: Summarizing Bivariate Data

Correlation coefficient:
1 x—k\[(y-¥
r_n__IZ( Sy )( 5y )

Slope of least-squares regression line:
§.

—

bl =Fr 5,

y-intercept of ieast-squares regression line:

b0=)_»’—‘blx

Equation of least-squares regression line:

Chapter 5: Probability

General Addition Rule:
P(A or B) = P(A) + P(B) — P(A and B)

Multiplication Rule for Independent Events:
P(A and B) = P(A)P(B)

Addition Rule for Mutually Exclusive Events:
P(A or B) = P{(A) + P(B)

Rule of Complements:
P(A®)=1- P(A)

General Method for Computing Conditional
Probability:
P(A and B)
P(A)
General Multiplication Rule:
P(A and B) = P(A)P(B | A) = P(B)P(A | B)

Permutation of r items chosen from n:
n!
=

Combination of r items chosen from »:

P(B|A) =




Chapter 6: Discrete Probability Distributions

Mean of a discrete random variable: Standard deviation of a binomial random variable:
By = Llx - P(x)] oy = \/np(l - p)

Variance of a discrete random variable: Mean of Poisson random variabie:

o3 = Flx — uy)?* - P(x)] = L2 - P(x)] — M?( Hy = At !

Standard deviation of a discrete randem variable: Variance of Poisson ramiom variable:

ox = \/% ‘ 0% = it

Mean of a binemial ramdom variable: Standard deviation of Poisson random variable:
py =np ox = Vit

Variance of a binomial random vaﬁﬁble:

o =np(1-p)

Chapter 7: The Normal Distribution

Z-score: z-score for a sample mean:
Z = Ik Z= il
G O%

Convert z-score to raw score: Siandard deviation of the sample proportion:
X=p+z0 fp(L-p)

o'ﬁ = B ——

. n

Standard deviation of the sample mean: z-score for a ssmple proportion:
0z = = 7= é..:.g

X ﬁ Up

Chapter 8: Confidence Intervals

Confidence interval for a mean, standard deviation Sample size to construct an interval for p with
known: margin of error ri::
2
F—upe < U <EtZyp—— n=p(l —p) (5“-’3) if a value for p is available
Vi v m |
Zapp\* | - .

Sample size to construct an interval for 4 with margin n =025 (":—;—) if no value for p is available
of error m:

Zajz * O\ ? Confidence interval for the variance of a normal
= ( T m ) distribution:

- — 112
Confidence interval for a mean, standard Qﬁ_zli <gt< (r 5 L)s
deviation unknown: Xap2 Alwafa
- s - s
x- ‘u/zv;; <u<x+ tu/zﬁ Confidence interval for the standard deviation of
' a normal distribution:

Confidence interval for a proportion: - 152 - 152

- — —_—l
Al — 1— 2 2
b=zap\| P <p<ﬁ+za/z\/‘ﬂ( - 2 Yap2 Mi—ap2




Chapter 9: Hypothesis Testing

Test statistic for a mean, standard deviation known: Test statistic for a proportion:
- Mo p — Py
i= 7= ——
a//n fpo(t = po)
R
Test statistic for 2 mean, standard deviation ynknown: Test statistic for a standard deviation:
=y , =15
i= Yo = ———
s/\/n %
Chapter 10: Two-Sample Confidence Intervals
Confidence interval for the difference between two Confidence interval for the difference
means, independent samples: between two means, matched pairs:

- s%+s§< < Fy =yt s%+s§ Tt 20 oy <dr, -t
17X Tl PR My = i 1 X g2 n /2 ﬁ d a/2 \/:7:

Confidence interval for the difference between two proportions:

- p(L—Py) _ a0 —P)
PI_PZ_ZaIZJPI e

Ry Hy
N Bi(1 =py) Pl —py)
< py—po <Py —
Py =Pz <P Pz"‘za/z\[ Py + P

Chapter 11: Two-Sample Hypothesis Tests

Test statistic for the difference between two means, Test statistic for the difference hetween
independent samples: ' two means, matched pairs:
Gy — %) — (g — ) _d-uy
t= t=
sy 52 safvn
—_— + —
noom
Test statistic for the difference between two preportions: Test statistic for two standard deviations:
P - bo P Larger of 57 and 52
Z = p—
T 1 Smaller of 57 and 57
P -p) (— + -) '
np Ry
where p is the pooled proportion p = hth
? p prop = .

Chapter 12: Tests with Qualitative Data

Chi-square statistic: Expected frequency for independence or homogeneity:
2y (0 -Ey £ — Row total - Column total
z= E - Grand total

Expected frequency for geodness-of-fi:
E=np




Chapter 13: Inference in Linear Models

Residual standard deviation: Confidence interval for the mean response:
o -9 1 (- %2
=V YEhen Syt Te—p
Standard error for b,: Test statistic for slope b,:
5, by
Sp = =
VEG- 2 S
Confidence interval for slope: Prediction interval for an individual response:
. 1, fx*—%P
by =ty G <PL<bitlep -5 J’:t'ajz'se\/“';*'m

Chapter 14: Analysis of Variance

Treatment sum of squares: Error square:
S§Tr = nl(x':l —E)z + nz(jz —i')z +--- 4+ "I(EI —.E)z MSE.= N'S—S_E—i
Treatment mean square: F statistic for one-way ANOVA:
3STr _ MSTr
MSTr=711 F="sE
Ervor sum of squares: Test statistic for Tokey—Kramer test:
% - %]
SSE = (ny — 1)82 + (ny — 1) + - - - + (ny — 1)s? 9= il |

MSE(l_l__}_)
2 \n n

Chapter 15: Nonparametric Statistics

Test statistic for the sign test: Standard deviation of S, the sum of the
X4+05-n/2 ranks for the rank-snm test:
2= m————tn ifn > 25
Vn/2 \/nlnztn, +m+1)
SENTT 7
If n < 25, the test statistic is x, the number of times the less
frequent Slgﬂ occurs. ‘ Test statistic for the rank-smm test:
= S — ug
Mean of S, the sum of the ranks for the rank-sum test: T g
ny(ny +n,+ 1)
sETTTT
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