# Everything you've always wanted to know about confidence intervals (CI = (estimator) ± (margin of error) = (estimator) ± (critical value)(standard error))

| Parameter                                                   | Estimator<br>(Statistic) | Sampling Dist.<br>Std. Dev.                              | Sampling Dist.<br>Std. Error                                                                                                                           | Conditions<br>for use                                                                                                                                             | Critical<br>Value | Confidence Interval                                                                                                                                                                                             |
|-------------------------------------------------------------|--------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | $\tilde{x}$              |                                                          | 5                                                                                                                                                      | Large random sample:<br>(n≥30)                                                                                                                                    | Z <sub>α/2</sub>  | $\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$                                                                                                                                                              |
|                                                             |                          | $\frac{\sigma}{\sqrt{n}}$ es (dependent samples)         | $s_{\overline{x}} \approx \frac{s}{\sqrt{n}}$ are a special case of                                                                                    | Small random sample: (n < 30, parent population approximately normal)                                                                                             | t <sub>al2</sub>  | $\overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}},$ $d.f. = n - 1$                                                                                                                                              |
| р                                                           | $\hat{p} = \frac{X}{n}$  | $\sqrt{\frac{p(1-p)}{n}}$                                | $s_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$                                                                                                    | Random sample $n\hat{p} \ge 5, n(1-\hat{p}) \ge 5$                                                                                                                | Zα/2              | $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\dot{p}(1-\hat{p})}{n}}$                                                                                                                                                  |
| μ <sub>1</sub> – μ <sub>2</sub><br>(Independent<br>samples) | <i>x</i> ₁~ <i>x</i> ₂   | $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ | $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$                                                                             | Large random sample $(n_1 \ge 30 \text{ and } n_2 \ge 30)$                                                                                                        | Z <sub>a/2</sub>  | $(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$                                                                                                               |
|                                                             |                          |                                                          | $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ | Small sample $(\sigma_1^2 = \sigma_2^2, n_1 < 30 \text{ or } n_2 < 30,$ two random samples drawn from independent, approximately normal populations) Small sample | t <sub>a/2</sub>  | $(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$ $d.f. = n_1 + n_2 - 2$                                                                            |
|                                                             |                          |                                                          | $s_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$                                                                   | $(\sigma_1^2 \neq \sigma_2^2$ , two random samples drawn from independent, approximately normal populations)                                                      | t <sub>a/2</sub>  | $(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$<br>$d.f. = n_1 + n_2 - 2  (n_1 = n_2),$<br>$d.f. = (software)  (n_1 = n_2),$<br>or $min\{n_1 - 1, n_2 - 1\}.$ |
| p <sub>1</sub> - p <sub>2</sub>                             | $\hat{p}_1 - \hat{p}_2$  | $\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$ | $s_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$                                       | Random samples $n_1 \hat{p}_1 \ge 5, n_1 (1 - \hat{p}_1) \ge 5$ $n_2 \hat{p}_2 \ge 5, n_2 (1 - \hat{p}_2) \ge 5$                                                  | Z <sub>a/2</sub>  | $(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$                                                                                       |
| β <sub>1</sub> (slope of<br>regression<br>line)             | $\hat{eta}_1$            | $\sigma_{\hat{eta}_1}$                                   | $s_{\hat{eta}_1}$ (from computer printout – shows as "Stdev" for predictor variable)                                                                   | For each x, the corresponding values of y are normally distributed and all have the same standard deviation. The mean values of the y's lie on a line.            | t <sub>a/2</sub>  | $\hat{\beta}_1 \pm t_{\alpha/2} s_{\hat{\beta}_1}, d.f. = n - 2$                                                                                                                                                |

# Everything you've always wanted to know about hypothesis testing $(\text{Test Statistic*} = \frac{(estimator) - hypothesized \ value}{standard \ error})$

| Null<br>Hypothesis                               | Estimator (Statistic)                                  | Sampling Dist.<br>Std. Dev.                               | Sampling Dist.<br>Std. Error                                                                                                                           | Conditions<br>for use                                                                                                                                  | Test Statistic                                                                                                                                                                                      |
|--------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_o: \mu = \mu_o$                               | $\bar{x}$                                              | $\frac{\sigma}{\sqrt{n}}$                                 | $S_{\overline{x}} = \frac{s}{\sqrt{n}}$                                                                                                                | Large random sample:<br>(n≥30)                                                                                                                         | $Z^* = \frac{\overline{X} - \mu_0}{5\sqrt{n}}$                                                                                                                                                      |
| Note: <b>Paire</b><br>one-sample                 | e <b>d samples</b> (c<br>e statistics ( H <sub>o</sub> | <br> dependent samples)<br> : µ <sub>d</sub> = 0 )        | are a special case of                                                                                                                                  | Small random sample: (n < 30, population approximately normal)                                                                                         | $t^* = \frac{\overline{X} - \mu_o}{\frac{S}{\sqrt{n}}}$ $d.f. = n - 1$                                                                                                                              |
| $H_o: p = p_o$                                   | $\hat{p} = \frac{X}{n}$                                | $\sqrt{\frac{p(1-p)}{n}}$                                 | $s_{\hat{p}} = \sqrt{\frac{p_{\mathcal{O}}(1 - p_{\mathcal{O}})}{n}}$                                                                                  | Random Sample $np_o \ge 5, n(1-p_o) \ge 5$                                                                                                             | $z^* = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$                                                                                                                                         |
| 4                                                |                                                        | ·                                                         | $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$                                                                             | Large random samples $(n_1 \ge 30 \text{ and } n_2 \ge 30)$                                                                                            | $z^* = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$                                                                                                                   |
| $H_o: \mu_1 - \mu_2 = 0$ or $H_o: \mu_1 = \mu_2$ | $\bar{x}_1 - \bar{x}_2$                                | $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$  | $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ | Small samples $(\sigma_1^2 = \sigma_2^2, n_1 < 30 \text{ or } n_2 < 30, \text{ two}$ random samples from independent approximately normal populations) | $t^* = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, d.f. = n_1 + n_2 - 2$                                                                       |
| (independent<br>samples)                         |                                                        | ·                                                         | $S_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1 + \frac{s_2^2}{n_2}}}$                                               | Small sample<br>(σ₁² ≠ σ₂², two random samples<br>from approximately normal<br>populations)                                                            | $t^* = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $d.f. = n_1 + n_2 - 2  (n_1 = n_2),$ $d.f. = (software)  (n_1 \neq n_2)$ or $min \{n_1 - 1, n_2 - 1\}$ |
| $H_o: p_1 - p_2 = 0$ or $H_o: p_1 = p_2$         | $\hat{p}_1 - \hat{p}_2$                                | $\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ | $s_{\hat{p}_1 - \hat{p}_2} = \sqrt{\hat{p}(1 - \hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$ where $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$    | $n_1 \hat{p}_1 \ge 5, n_1 (1 - \hat{p}_1) \ge 5$<br>$n_2 \hat{p}_2 \ge 5, n_2 (1 - \hat{p}_2) \ge 5$                                                   | $z^* = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$                                                                                           |
| H <sub>o</sub> : β <sub>1</sub> = 0              | β̂ <sub>1</sub> (OR: b)                                | $\sigma_{\hat{m{eta}}_1}$                                 | $s_{eta_1}$ (from computer printout – shows as "Stdev" for predictor variable)                                                                         | For each x, the corresponding values of y are normally distributed and all have the same standard deviation. The mean values of the y's lie on a line. | $t^* = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}, d.f. = n - 2$                                                                                                                                       |

From STEM center

# **IMPORTANT FORMULAS**

#### **Chapter 3: Numerical Summaries of Data**

Sample mean:

$$\bar{x} = \frac{\sum x}{n}$$

Population mean:

$$\mu = \frac{\sum x}{N}$$

Range:

Range = largest value - smallest value

Population variance:

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

Sample variance:

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Coefficient of variation:

$$CV = \frac{\sigma}{\mu}$$

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Interquartile range:

$$IQR = Q_3 - Q_1 = third quartile - first quartile$$

Lower outlier boundary:

$$Q_1 - 1.5 \, \text{IQR}$$

Upper outlier boundary:

$$Q_3 + 1.5 IQR$$

#### **Chapter 4: Summarizing Bivariate Data**

Correlation coefficient:

$$r = \frac{1}{n-1} \sum_{x} \left( \frac{x - \bar{x}}{s_x} \right) \left( \frac{y - \bar{y}}{s_y} \right)$$

y-intercept of least-squares regression line:

$$b_0 = \bar{y} - b_1 \bar{x}$$

Slope of least-squares regression line:

$$b_1 = r \frac{s_y}{s_x}$$

Equation of least-squares regression line:

$$\hat{y} = b_0 + b_1 x$$

# **Chapter 5: Probability**

**General Addition Rule:** 

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

General Method for Computing Conditional

$$P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$$

Multiplication Rule for Independent Events:

$$P(A \text{ and } B) = P(A)P(B)$$

Addition Rule for Mutually Exclusive Events:

$$P(A \text{ or } B) = P(A) + P(B)$$

General Multiplication Rule:  $P(A \text{ and } B) = P(A)P(B \mid A) = P(B)P(A \mid B)$ 

Permutation of 
$$r$$
 items chosen from  $n$ :

$${}_{n}P_{r}=\frac{n!}{(n-r)!}$$

Rule of Complements:

$$P(A^c) = 1 - P(A)$$

Combination of r items chosen from n:

$$_{n}C_{r}=\frac{n!}{r!(n-r)!}$$

#### **Chapter 6: Discrete Probability Distributions**

Mean of a discrete random variable:

$$\mu_X = \sum [x \cdot P(x)]$$

Variance of a discrete random variable:

$$\sigma_X^2 = \sum [(x-\mu_X)^2 \cdot P(x)] = \sum [x^2 \cdot P(x)] - \mu_X^2$$

Standard deviation of a discrete random variable:

$$\sigma_X = \sqrt{\sigma_X^2}$$

Mean of a binomial random variable:

$$\mu_X = np$$

Variance of a binomial random variable:

$$\sigma_{\mathbf{y}}^2 = np(1-p)$$

Standard deviation of a binomial random variable:

$$\sigma_X = \sqrt{np(1-p)}$$

Mean of Poisson random variable:

$$\mu_X = \lambda i$$

Variance of Poisson random variable:

$$\sigma_{\rm Y}^2 = \lambda t$$

Standard deviation of Poisson random variable:

$$\sigma_X = \sqrt{\lambda t}$$

# **Chapter 7: The Normal Distribution**

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Convert z-score to raw score:

$$x = \mu + z\sigma$$

Standard deviation of the sample mean:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

z-score for a sample mean:

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}}$$

Standard deviation of the sample proportion:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

z-score for a sample proportion:

$$z = \frac{\hat{p} - p}{\sigma_{\hat{p}}}$$

# **Chapter 8: Confidence Intervals**

Confidence interval for a mean, standard deviation known:

$$\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

Sample size to construct an interval for  $\mu$  with margin of error m:

$$n = \left(\frac{z_{\alpha/2} - \sigma}{m}\right)^2$$

Confidence interval for a mean, standard deviation unknown:

$$\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

Confidence interval for a proportion:

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Sample size to construct an interval for p with margin of error m:

$$n = \hat{p}(1 - \hat{p}) \left(\frac{z_{\alpha/2}}{m}\right)^2 \text{ if a value for } \hat{p} \text{ is available}$$

$$n = 0.25 \left(\frac{z_{\alpha/2}}{m}\right)^2$$
 if no value for  $\hat{p}$  is available

Confidence interval for the variance of a normal distribution:

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}$$

Confidence interval for the standard deviation of a normal distribution:

$$\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}$$

# **Chapter 9: Hypothesis Testing**

Test statistic for a mean, standard deviation known:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Test statistic for a proportion:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Test statistic for a mean, standard deviation unknown:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Test statistic for a standard deviation:

$$\chi^2 = \frac{(n-1)\cdot s^2}{\sigma_0^2}$$

### **Chapter 10: Two-Sample Confidence Intervals**

Confidence interval for the difference between two means, independent samples:

$$\bar{x}_1 - \bar{x}_2 - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < \bar{x}_1 - \bar{x}_2 + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Confidence interval for the difference between two means, matched pairs:

$$\bar{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < \mu_d < \bar{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}}$$

Confidence interval for the difference between two proportions:

$$\begin{split} \hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \\ < p_1 - p_2 < \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \end{split}$$

#### **Chapter 11: Two-Sample Hypothesis Tests**

Test statistic for the difference between two means, independent samples:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Test statistic for the difference between two means, matched pairs:

$$t = \frac{\bar{d} - \mu_0}{s_d / \sqrt{n}}$$

Test statistic for the difference between two proportions:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where  $\hat{p}$  is the pooled proportion  $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$ 

Test statistic for two standard deviations:

$$F = \frac{\text{Larger of } s_1^2 \text{ and } s_2^2}{\text{Smaller of } s_1^2 \text{ and } s_2^2}$$

# **Chapter 12: Tests with Qualitative Data**

Chi-square statistic:

$$\chi^2 = \sum_{E} \frac{(O-E)^2}{E}$$

Expected frequency for independence or homogeneity:

$$E = \frac{\text{Row total} \cdot \text{Column total}}{\text{Grand total}}$$

Expected frequency for goodness-of-fit:

$$E = np$$

#### **Chapter 13: Inference in Linear Models**

Residual standard deviation:

$$s_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$$

Standard error for  $b_1$ :

$$s_b = \frac{s_e}{\sqrt{\sum (x - \bar{x})^2}}$$

Confidence interval for slope:

$$b_1 - t_{\alpha/2} \cdot s_b < \beta_1 < b_1 + t_{\alpha/2} \cdot s_b$$

Confidence interval for the mean response:

$$\hat{y} \pm t_{\alpha/2} \cdot s_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x - \bar{x})^2}}$$

Test statistic for slope  $b_1$ :

$$t = \frac{b_1}{s_h}$$

Prediction interval for an individual response:

$$\hat{y} \pm t_{\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x - \bar{x})^2}}$$

#### **Chapter 14: Analysis of Variance**

Treatment sum of squares:

$$SSTr = n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2$$

Treatment mean square:

$$MSTr = \frac{SSTr}{I - 1}$$

Error sum of squares:

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2$$

Error mean square:

$$MSE = \frac{SSE}{N-I}$$

F statistic for one-way ANOVA:

$$F = \frac{MSTr}{MSE}$$

Test statistic for Tukey-Kramer test:

$$q = \frac{|\bar{x}_i - \bar{x}_j|}{\sqrt{\frac{MSE}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

# **Chapter 15: Nonparametric Statistics**

Test statistic for the sign test:

$$z = \frac{x + 0.5 - n/2}{\sqrt{n}/2} \quad \text{if } n > 25$$

If  $n \le 25$ , the test statistic is x, the number of times the less frequent sign occurs.

Mean of S, the sum of the ranks for the rank-sum test:

$$\mu_S = \frac{n_1(n_1 + n_2 + 1)}{2}$$

Standard deviation of S, the sum of the ranks for the rank-sum test:

$$\sigma_S = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

Test statistic for the rank-sum test:

$$z = \frac{S - \mu_S}{\sigma_S}$$