For person A, acceleration is in the positive direction

$$
\begin{aligned}
& N-m g=m a \\
& N=m a+m g \\
& =m(a+g) \\
& \text { Find } m \text { : } \\
& F=m g \\
& 500 N=m(10) \text { make the } \\
& \text { math } \\
& \text { easier } \\
& m=50 \mathrm{~kg}
\end{aligned}
$$

$$
N=50(2+10)
$$

$$
N=600 \mathrm{~N}
$$

scale reads 606 N
you feel heavier because your inertia is resisting the upward acceleration

For person B : same $F B D$ as person A

$$
\sum \vec{F}=m \vec{a} \quad \uparrow+
$$

$$
\begin{gathered}
N-m g=m a \\
N=m(a+g) \\
N_{i i}=50(-2+10)
\end{gathered}
$$

acceleration 's in the Negative direction for person B

$$
N=400 N
$$

Bottom: using equation from above:

$$
\begin{aligned}
& N=m(a+g) \quad \uparrow+ \\
& m=60 \mathrm{~kg} \\
& g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& X_{A}=60(2+10)=720 \quad \times 1 \\
& N_{B}=60(-2+10)=480 \mathrm{~N} \\
& N_{C}=60(0+10)=600 \mathrm{~N} \\
& N_{D}=60(2+10)=720 \mathrm{~N}
\end{aligned}
$$

velocity does Not matter, only acceleration
work sheer

$$
p .134
$$

FBD for m, $\uparrow F \quad$ qT

FBD for m_{2}

$$
\wedge^{T}
$$

FBD for system $\left(m_{1}+m_{2}\right)$

$\left(m_{1}+m_{2}\right) g$

$$
\Sigma F=m, a \quad \uparrow+
$$

$$
\Sigma F=m_{2} a T+
$$

$\sum F=\left(m_{1}+m_{2}\right) a \quad T+$
(1)

$$
F-T-m_{1} g=m_{1} a
$$

(2)

$$
T-m_{2} g=m_{2} a
$$

(3)

$$
F-\left(m_{1}+m_{2}\right) g=\left(m_{1}+m_{2}\right) a
$$

a) $\mathrm{m}_{1} \rightarrow 5 \mathrm{~kg}$

$$
m_{2} \rightarrow 11 \mathrm{~kg}
$$

using (2) above: $T-m_{2} g=m_{2} a$

$$
T=m_{2}(g+a)
$$

$$
T=m_{2}(7)
$$

if m_{2} increases, so does T
Answer: (i)
b)

$$
\begin{aligned}
& m_{1} \rightarrow 7 \mathrm{kj} \\
& m_{2} \rightarrow 9 \mathrm{kj}
\end{aligned}
$$

Same logic as part a
Answer: ($i i$)
c) $a \rightarrow 2 \frac{m}{s^{2}} \downarrow$ using equation 2 :

$$
\begin{aligned}
T=m_{2}(g+a) \\
\uparrow \\
a=-2 \text { Now } \\
T=m_{2}(10-2) \\
=m_{2}(8)
\end{aligned}
$$

T increases from original value
Answer: (i)
d) $a \rightarrow 4 \mathrm{~m}^{2} \downarrow$

$$
T=m_{2}(10-4)
$$

$=m_{2}(6)$
T decreases from original value
Answer: (ii)

