Goals for the Lecture:

5:22 PM

- 1) Understand what a dielectric is and how it changes capacitance
- 2) Understand the difference of making changes to a capacitor while it is connected to a power source and when it is disconnected from its power source

$$\begin{array}{c}
\text{YeS}, \quad E = 0 \quad \text{inside a conductor} \\
E_{1} = \frac{C_{1}}{2E_{0}} \\
E_{2} = \frac{C_{1}}{2E_{0}} \\
E_{2} = \frac{C_{1}}{2E_{0}} \\
E_{3} = \frac{C_{1}}{2E_{0}} \\
E_{4} = \frac{C_{1}}{2E_{0}} \\
E_{5} = \frac{C_{1}}{2E_{0}} \\
E_{6} = \frac{C_{1}}{2E_{0}} \\
E_{7} = \frac{C_{1}}{2E_{0}} \\
E_{7} = \frac{C_{1}}{2E_{0}} \\
E_{8} = \frac{C_{1}}{2E_{0}} \\
E_{1} = \frac{C_{1}}{2E_{0}} \\
E_{1} = \frac{C_{1}}{2E_{0}} \\
E_{2} = \frac{C_{1}}{2E_{0}} \\
E_{3} = \frac{C_{1}}{2E_{0}} \\
E_{4} = \frac{C_{1}}{2E_{0}} \\
E_{1} = \frac{C_{1}}{2E_{0}} \\
E_{2} = \frac{C_{1}}{2E_{0}} \\
E_{3} = \frac{C_{1}}{2E_{0}} \\
E_{4} = \frac{C_{1}}{2E_{0}} \\
E_{5} = \frac{C_{1}}{2E_{0}} \\
E_{7} = \frac{C_{1}}{2E_{0}} \\
E_{8} = \frac{C_{1}}{2E_{0}} \\
E_{1} = \frac{C_{1}}{2E_{0}} \\
E_{2} = \frac{C_{1}}{2E_{0}} \\
E_{3} = \frac{C_{1}}{2E_{0}}$$

$$E = \frac{q_m}{2\epsilon_0 A}$$

$$= \frac{0.4}{2\epsilon_0}$$

$$= \frac{0.4}{2\epsilon_0}$$

$\frac{Q_1}{2A_1}$	
$E_{Lf} = \frac{Q_1}{4\epsilon_0 A_1} = \frac{Q_1}{2\epsilon_0}$ $E_{Rf} = \frac{Q_1}{4\epsilon_0 A}$	= Spt = 260
In region (): (to the left of the plate):	
$ \frac{1}{E_{10}+1} = \frac{1}{E_{11}} + \frac{1}{E_{11}} - \frac{1}{E_{10}} $ $ = -\left(\frac{Q_1}{u\epsilon_0 A_1}\right) - \frac{Q_1}{u\epsilon_0 A_1} $	
$= -2\left(\frac{Q_1}{q\epsilon_0 A_1}\right) = -2\frac{6}{2\epsilon_0}$	
In Region (D). (Inside the conductive plate	.):
$E_{t,t_{\alpha}} = E_{t,t_{\alpha}} + E_{ex}$ $= + Q_{t_{\alpha}} - Q_{t_{\alpha}}$ $= + Q_{t_{\alpha}} - Q_{t_{\alpha}}$	
= 0	
In Region (3): (Rt side of Plate)	
$\overline{E}_{440} = + 2 \frac{Q_1}{4\epsilon_0 A_1} = 2 \frac{6}{2\epsilon_0}$	
$P.80$ D) $6' = \frac{Q_1}{A_1}$	
6' = 2 6	
Einsulatur - Econducter	

7.83	2) OV	-> same		
	E	-> increases	+	
	6	> increases	4 SV	
			+	
			Q=CV	
	3) E	= <u>Vo</u>		
	6=	V _o € _o		
	y\ Q	6 A	E. A	, scte
	4) Q 0V	= GA = = = = = = = = = = = = = = = = = =	$\left(\begin{array}{c} \epsilon_{\circ} A \\ \end{array}\right) = \left(\begin{array}{c} \epsilon_{\circ} A \\ \end{array}\right)$	serellel plate
		Eo		
P. 84) No			
	z) yes	,		
7		Q -> Same		
	,	Q >> Same		
		E >> Same		
		by increase	S	
	2)	Q -> decreyes	Q = C V	

$$\frac{1}{(C_{eq})_{z}} = \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$$

$$(C_{eq})_{z} = 1.62 + \frac{1}{6}$$

