Problem 1

Find the rotational inertia of each object about the indicated axis of rotation in terms of M and R or M and L :
a) A uniform, circular, hollow ring with mass M and radius R. Axis of rotation is perpendicular to the page and goes through the rim of the ring, as shown.

b) A uniform, square, hollow loop with total mass 4 M and the length of each side L . Axis of rotation is perpendicular to the page and through the corner of the square, as shown.

c) A non-uniform rod with density given by, $\lambda=\alpha x^{2}$, in units of kg / m, x is measured in meters from the end of the rod, and α is a positive constant. The rod has total mass M and length L . The axis of rotation is perpendicular to the page and located at the end of the rod where $x=0$.

Problem 2

Calculate the torque (magnitude and direction) about point O due to force F . Give your answer in terms of F and L (the length of the rod). The force F and the rod both lie in the plane of the page.

Problem 3
A physical pendulum consists of a rod of mass m_{r} and length L and is free to rotate about its top end. A block, m_{b}, slides down a frictionless incline and sticks to the end of the rod. Find the maximum angle the rod makes with the vertical after the collision.

Rod

$$
\mathrm{m}_{\mathrm{r}}=0.7 \mathrm{~kg}
$$

$$
\mathrm{L}=1.1 \mathrm{~m}
$$

Block

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{b}}=0.6 \mathrm{~kg} \\
& \mathrm{~h}=0.8 \mathrm{~m}
\end{aligned}
$$

Problem 4

Write out the equations needed to solve for the acceleration of the blocks and the tensions in the strings in terms of the following known quantities: $m_{1}, m_{2}, m_{3}, m_{\text {pulley }}, R_{\text {pulley }}, g, \mu_{s}$, μ_{k}, θ. There is friction. Box 2 is moving to the right (block 1 goes up and block 3 goes down). The two pulleys are identical and are solid disks.

