Shy 4A 12/2

Goals for the Lecture:

1) Know how to calculate gravitational forces between any two objects with mass
2) Know how to calculate the acceleration due to gravity far away from the earth's surface or on other planets
3) Understand geosynchronous orbit and how to calculate it
4) Know how to calculate the gravitational potential energy far away from the earth's surface or between any two objects with mass

$$
\begin{aligned}
& F_{g}=m g \quad \text { only on surface of earth } \\
& F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { universal }
\end{aligned}
$$

$$
\frac{G M_{E}}{R_{E}^{2}}=g
$$

$$
G=6.67 \times 10^{-11} \frac{\mathrm{Nm}}{\mathrm{mg}^{2}}
$$

n 1. -trial Finerau:

Potential Energy:
on Earthis Surface: $\quad F_{g}=m g$

$$
\omega=\int F \cdot d y
$$

$$
=-\left.a g g y\right|_{y_{i}} ^{y_{1}}
$$

$$
\begin{aligned}
& =-\underbrace{m g y_{f}}+m q y_{r} . \\
& =-\Delta u
\end{aligned}
$$

$$
u_{j}=m g y
$$

when F_{y} is constant \rightarrow on surface of earth

In general:

$$
\begin{aligned}
F_{g} & =\frac{G m_{1} M_{2}}{r^{2}} \\
w & =\int_{r_{i}}^{r_{f}} \frac{G m_{1} M x_{2}}{r^{2}} d r \\
& =\left.\frac{G m_{1} m_{2}}{r}\right|_{r_{i}} ^{r_{f}} \\
& =\frac{G m_{1} m_{2}}{r_{f}}-\frac{G m_{1} m_{2}}{r_{i}} \\
& =-\Delta u^{r} \\
U_{g} & =-\frac{G m_{1} m_{2}}{r} \quad \text { in general }
\end{aligned}
$$

Example how fast does a projectile Need to be launched from Earthis surface to reach a max. height of one Earth radius? ignor ar resistance

$$
\begin{gathered}
E_{i}=E_{f} \\
k_{i}+\left(u_{g}\right)_{i}=F_{f}^{0}+\left(u_{g}\right)_{f} \\
\frac{1}{2} \alpha v_{i}^{2}-\frac{G \not q M_{E}}{R_{E}}=0-\frac{G \mu M M_{E}}{2 R_{E}} \\
v_{i}=\sqrt{2 \frac{G M M_{E}}{\gamma R_{E}}}
\end{gathered}
$$

Find the escape speed: want V_{f} to be zero at $r=\infty$

$$
\begin{gathered}
k_{i}+\left(U_{g}\right)_{i}=k_{f}+\left(U_{g}\right)_{f} \\
\frac{1}{2} m v_{i}^{2}-\frac{G M M_{E}}{R_{E}}=0-0 \\
V_{i}=\sqrt{\frac{2 G M_{E}}{R_{E}}}
\end{gathered}
$$

Side view:

1) Planets move in ellipses w/ sun at one focus

2)

planets go foster

