Goals for the Lecture:

1) Know how to calculate the angular momentum of objects moving in a straight lines
2) Know how to calculate the angular momentum of rotating rigid objects

Parallel axis Theorem:

Given:

$$
I_{c m}=\frac{1}{12} M L^{2}
$$

Find

using parallel axis theorem:

$$
\begin{aligned}
I & =I_{c m}+M D^{2} \\
& =\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2} \\
& =\left(\frac{1}{12}+\frac{1}{4}\right) M C^{2} \\
& =\frac{1}{3} M L^{2}
\end{aligned}
$$

Find:

$$
I=\frac{1}{12} M L^{2}+M\left(\frac{L}{2}+a\right)^{2}
$$

Find I for the pendulum of a grandfather clock:

solid,
$j=s k$

Rod':

$$
\begin{aligned}
& \text { length }=2 R \\
& \text { mass }=M
\end{aligned}
$$

$$
\text { disk: } \begin{aligned}
\text { radius } & =R \\
\text { mass } & =2 M
\end{aligned}
$$

$$
\begin{aligned}
I=I_{r o d} & =I_{\text {disk }} \\
I_{\text {rod }} & =\frac{1}{3} M_{\text {rod }} L_{\text {rod }}^{2}=\frac{1}{3} M(2 R)^{2}=\frac{4}{3} M R^{2} \\
I_{\text {disk }} & =I_{\text {com }}+M_{\text {dost }} D^{2} \\
& =\frac{1}{2} M_{d o s k} R^{2}+M M_{\text {di,kk}}(3 R)^{2} \\
& =\frac{1}{2}(2 m) R^{2}+(2 M) 9 R^{2} \\
& =M R^{2}+18 M R^{2} \\
& =19 M R^{2} \\
I=\frac{4}{3} M R^{2} & =19 M R^{2}
\end{aligned}
$$

works he et

$$
\text { p. } 92
$$

Equilibrium:

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \text { and }
\end{aligned}
$$

$$
\sum \vec{\tau}=0
$$

$$
F_{\text {support }}(0)+F_{g}(0)=0
$$

No torque

which hits first: B
Does A hit the "X" or off to one side: A hits the " X "
p.94
B)

$$
\begin{aligned}
&\left(F_{\text {Nat }}\right)_{A}=m g-T=m a \\
& a=\frac{m g-T}{m}=g-\frac{T}{m} \\
&\left(F_{\text {mat }}\right)_{B}=m g=m a \\
& a=g
\end{aligned}
$$

Torque Example - 1

A 145 g meter stick is suspended at the 50 cm mark.
If 55 g are added at the 75 cm mark, how many grams should be added at the 25 cm mark to keep the system in equilibrium?

$$
\begin{aligned}
& \frac{50}{\underbrace{}_{x}} \overbrace{55} \\
& \sum \vec{z}=0 \\
& +x(25(\mathrm{~m})-55(2 \times \mathrm{m})=0 \\
& x=55
\end{aligned}
$$

Torque Example - 2

A 145 g meter stick is suspended at the 50 cm mark
If 25 g are added at the 90 cm mark, how many grams should be added at the 40 cm mark to keep the system in equilibrium?

1) 25 g
2) 40 g
3) 90 g
4) 100 g
5) 1495 g

$$
\sum \tau=x(10)-25(40)=0 \quad \Rightarrow \quad x=100
$$

Torque Example - 3

A 145 g meter stick is suspended at the 25 cm mark.
How many grams should be added at the zero cm mark to keep the system in equilibrium?

1) 25 g
2) 55 g
3) 90 g
4) 100 g

5) 145 g ?
6) 1495 g

Torque Example - 4

A 145 g meter stick is suspended at the 5 cm mark.
If 5 g are added at the 75 cm mark, how many grams should be added at the 0.4 cm mark to keep the system in equilibrium?

$$
\begin{gathered}
\Sigma \tau=x(4.6)-145(45)-5(70)=0 \\
x=1495 \text { grams }
\end{gathered}
$$

Torque Application

Rolling

loss of

$$
\begin{aligned}
& \text { loss ot } \\
& \text { meahen-cal }
\end{aligned}
$$

Angular Momentum:

$$
\begin{array}{rlrl}
\sum \sum \vec{F} & =m \vec{a} & & \sum \vec{F}=\frac{d \vec{p}}{d t} \\
& =m \frac{d \vec{v}}{d t} & \vec{r} \times\left(\sum \vec{F}\right)=\vec{r} \times x\left(\frac{d \vec{p}}{d t}\right) \\
& =\frac{d(m \vec{v})}{d t} \uparrow & \sum \vec{\tau} & =\frac{d}{d t}(\vec{r} \times \vec{p}) \\
\vec{p}=m \vec{v} & & \\
& & 1=\vec{r} \times \vec{D} \quad \text { For objects }
\end{array}
$$

$$
\begin{aligned}
& \text {-i - - - } \\
& \text { Rolling friction } \\
& \frac{\text { bunches up }}{\text { binmen }} \\
& \text { causes } \\
& \text { bunches up } \\
& \text { deforms } \\
& m g h=K_{T}+K_{R} \\
& =\frac{1}{2} m V_{c m}^{2}+\frac{1}{2} I W^{2} \\
& \text { about cot } \\
& =\frac{1}{2} m v_{c m}^{2}+\frac{1}{2}\left(\frac{2}{3} M R^{2}\right)\left(\frac{V_{c m}}{R}\right)^{2} \\
& v_{c m}=R \omega \\
& =\frac{1}{2} m V_{c m}^{2}+\frac{1}{3} m V_{c m}^{2} \\
& =\frac{5}{6} \mathrm{~m} v_{c m}^{2}
\end{aligned}
$$

$$
P_{i} \neq P_{f} \text { disk is attached }
$$

$L_{i}=L_{f}$ No torque

