Goals for the Lecture:

1) Calculate the center of mass for point objects and solid objects
2) Use center of mass to solve problems
3) Solve 2-D collision problems using momentum

Center $\frac{1}{r}$ mass
of cart + person

Find center of mass:

2

Let

$$
\begin{aligned}
& m_{1}=1 \mathrm{~kg} \\
& m_{2}=m_{3}=2 \mathrm{~kg} \\
& m_{4}=4 \mathrm{~kg} \\
& m_{5}=5 \mathrm{~kg}
\end{aligned}
$$

$$
=\frac{(1 k g)(0 m)+(2 k g)(2 m)+(2 k g)(2 m)+(4 k g)(3 m)+(5 k g)\left(k_{m}\right)}{(1+2+2+4+5) \mathrm{kg}}
$$

$$
=\frac{0+4+4+12+25}{14} \mathrm{~m}
$$

$$
=3,21 \mathrm{~m}
$$

$$
\begin{aligned}
y_{\mathrm{cm}}=\frac{\sum m_{i} y_{i}}{\sum m_{i}} & =\frac{(1 \mathrm{~kg})(0 \mathrm{~m})+(2 \mathrm{~kg})(2 \mathrm{~m})+(2 \mathrm{~kg})(-2 m)+(4 \mathrm{~kg})(0)+(5 \mathrm{~kg})(0)}{14} \\
& =0
\end{aligned}
$$

Sol: λ objects:

$$
\begin{aligned}
& 1-D \text { objet (rod) uniform density } \\
& d_{m}=\frac{M}{L} d x \\
& \text { mass density } \\
& \begin{aligned}
& d_{m}= \lambda_{\uparrow} d x \quad \text { in general } \\
& \\
& \text { mass density }
\end{aligned}
\end{aligned}
$$

Find C of m of uniform density Rod, length L

$$
=\frac{\frac{\lambda}{2} L^{2}}{\lambda L}=\frac{\frac{M}{2 L} L^{2}}{M L}=\frac{\frac{1}{2} M L}{M}=\frac{L}{2}
$$

Non- uniform

Suppose you are on a cart initially at rest that rides on a frictionless track. If you throw a ball off the cart towards the left, will the cart be put into motion?

1. Yes, and it moves to the right
2. Yes, and it moves to the left.
3. No, it remains in place.

Suppose you are on a cart which is initially at rest that rides on a frictionless track. You throw a ball at a vertical surface that is firmly attached to the cart. If the ball bounces straight back as shown in the picture. will the cart be put into motion after the ball bounces back from the surface?

1. Yes, and it moves to the right,
2. Yes, and it moves to the left.
3. No, it remains in place.

$$
\begin{aligned}
& \begin{array}{l}
\text { Now, with some changes: } \\
\text { time } t_{0}: \text { ball leaves hand }
\end{array} \\
& \text { t. ball comes to rest against wail } \\
& A_{2} \text { : person catches ball } \\
& \begin{array}{l}
\text { time interval } \\
\frac{t_{0} \rightarrow t_{1}}{\text { at } t_{1}}
\end{array} \frac{\text { diseotime of cart }}{\text { to the right }} \\
& \begin{array}{ll}
t_{1} \rightarrow t_{2} & \text { to the left } \\
\hline \text { at } t_{2} & \text { stopped }
\end{array}
\end{aligned}
$$

Suppose you are on a cart that is moving at a constant speed v toward the left on a frictionless track. If you throw a massive ball straight up (from your perspective), how will the speed of the cart change?

Right

1. Increase
2. Decrease
3. Will not change
4. You need to know how fast you throw the ball

person walks across boat boat. unoves away from beach everything at

Cor M of boat + person
$L=2 \mathrm{~m}$
boat is uniform nocks will Not change

$$
\begin{aligned}
& \left(X_{c m}\right)_{i}=\left(X_{\mathrm{cm}}\right)_{\frac{1}{c}} \\
& \left(\frac{\sum m_{i} x_{i}}{\sum m_{i}}\right)_{i}=\left(\frac{\sum m_{i} x_{i}}{\sum m_{i}}\right)_{f} \\
& \left(\frac{m_{p} x_{p}+m_{b} x_{b}}{m_{p}+m_{b}}\right)_{i}=\left(\frac{m_{p} x_{p}+m_{b} x_{b}}{m_{p}+m_{b}}\right)_{f} \\
& \frac{(100 \mathrm{kq})(10+2)+200)(10+1)}{100+200}=\frac{(100) x_{f}+200\left(x_{f}+1\right)}{300} \\
& X_{f}+\frac{2}{3}=11 \frac{1}{3} \\
& x_{f}=10 \frac{2}{3} \mathrm{~m} \\
& \text { NV - } 2 m \\
& \text { Find: how much boat } \\
& \text { moves }
\end{aligned}
$$ density

$$
\Delta X=\frac{2}{3} m
$$

Like problem 9-71 (with changes)

given:

$$
\begin{aligned}
& m=0.3 \mathrm{~kg} \\
& M=4 \mathrm{~kg}
\end{aligned}
$$

AX goes up 0.1 m after collision m rebounds with $\frac{1}{2}$ its initial speed fond:a) v_{i} of the rubber ball, just before the collision
6) is it an elastic collision?

Time live:

We momentum to find v_{i}

$$
\begin{aligned}
E_{3} & =E_{2} \\
M{ }_{g h} & =\frac{1}{2} \alpha / V_{B 2}^{2} \\
V_{B 2} & =\sqrt{2 g h} \quad \text { if } g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& =\sqrt{2} \quad \\
& =1.4
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}=r_{2} T \\
& m v_{R_{1}}+0=m\left(-\frac{1}{2} V_{R 1}\right)+M V_{B 2} \\
& m\left(\frac{3}{2} V_{R_{1}}\right)=M \sqrt{2} \\
& V_{R 1}=\frac{M}{m} \frac{2 \sqrt{2}}{3} \\
& =\frac{4}{0.3} \frac{2 \sqrt{2}}{3} \\
& =12.4 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& K_{i} \stackrel{?}{=} K_{f} \\
& \frac{1}{2} m V_{R 1}^{2}+0 \stackrel{?}{=} \quad \frac{1}{2} m V_{R 2}^{2}+\frac{1}{2} M V_{B 2}^{2} \\
& \frac{1}{2} m V_{R 1}^{2} \stackrel{?}{=} \frac{1}{2} m\left(\frac{V_{R 1}}{2}\right)^{2}+\frac{1}{2} M V_{B 2}^{2} \\
& \frac{1}{2}(0.3)(12.4)^{2} \stackrel{?}{=} \frac{1}{2}(0.3)(6.2)^{2}+\frac{1}{2}(4)(\sqrt{2})^{2} \\
& 23 \text { ? } \quad 6+4 \\
& 23>10 \\
& \text { vt is } \frac{\text { Inelastic }}{K_{i} \neq K_{f}}
\end{aligned}
$$

b)

