Goals for the Lecture:

1) Be able to calculate work done by constant and variable forces
2) Be able to calculate the scalar product (dot product) of two vectors
3) Understand how defining your system can affect the work done on the system or by the system

A car traveling to the right with a speed v brakes to a stop in a distance d. What is the work done on the car by the frictional force F ? (Assume that the frictional force is constant).

1. $W=F^{\star} d$
2. $W=-F^{\star} d$
3. $W=0$
4. $W=F^{\star} V$
5. $W=-F^{\star} V$

1) $\xrightarrow[D]{\stackrel{F}{\rightarrow} \quad \begin{array}{l}\text { m } \\ \vdots\end{array}}$

$$
\begin{array}{r}
W=F D \quad \text { since } F \text { is constant } \\
\text { and it points in same } \\
\text { direction os } \Delta \vec{x}
\end{array}
$$

> 2)

$$
\omega=F_{x} D=F \cos \theta D
$$

$$
\text { In general: (constant Forces) } \begin{aligned}
W & =\vec{F} \cdot \Delta \vec{x} \\
\omega & =|\vec{F}||\Delta \vec{x}| \cos \theta
\end{aligned}
$$

A car travels with a constant velocity v for a distance d up a
hill that makes an angle θ with respect to the horizontal.
What is the work done by the sum of the gravitational force plus the constant upward frictional force F that the hill exerts on the tires of the car?

1. $W=(m g \sin 0) \mathrm{d}$
2. $W=-(m g \sin ()) \mathrm{d}$
3. $W=0$
4. $W=F d$
5. $W=-F d$

Force	$\omega_{0 r k}$ done on car
N	$\omega=N(\Delta X) \cos 90^{\circ}=0$
F	$F \Delta X \cos 0^{\circ}=F d$
gravity	$m g(\Delta x) \cos (90+\theta)=-m g \sin \theta d$
$F_{\text {ret }}$	$W_{N}+W_{F} \perp W_{m j}=0+F l-m g \sin \theta d$

must be zero
because speed is
Not changing
Kinetic energy: $\quad K=\frac{1}{2} m v^{2}$

Work -KE Theorem: $\quad \sum \omega=\Delta K$

$$
H_{k}=0.2
$$

Find the work done by every force acting on the box and the Net work done on the box

$$
\begin{aligned}
& =0+0+250-14 \\
& =+236 \mathrm{~J}
\end{aligned}
$$

if box started from vest, how fast is it moving after 5 m ?

$$
\begin{aligned}
W_{\text {Net }} & =\Delta K \\
& =K_{f}-K_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m y_{i}^{6} \\
236 & =\frac{1}{2}(10) v_{f}^{2} \\
V_{f} & =6.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Lifting weights:

work done by you an the basbell (Lift at constant speed)

$$
W_{v p}=m g \operatorname{sy} \cos 0^{\circ}=m g s y
$$

Lower the barbell

$$
\begin{aligned}
& \quad W_{\text {down }}=m g s y \cos \left(80^{\circ}=-m g s y\right. \\
& W_{\text {Met }}=0
\end{aligned}
$$

A satellite travels with a constant speed $|\mathrm{v}|$ as it moves around a circle centered on the earth. How much work is done by the gravitational force F on the satellite after it travels half way around the earth in time t?

1. Cannot be determined
2. $W=0$
3. $\quad W=F^{*}|v| t$
4. $W=-F^{*}|v| t$

Because $F_{g} \perp \Delta x$

if I give you F vs x graph, find work done:

find work dore on box: $\omega=\frac{1}{2}(100)(5)=250 \mathrm{~J}$

The engine of a 1000 kg sports car rotates the tires, creating a forward pushing force F on the tires of the car that varies as a function of distance. The force is shown below. If the car starts at rest, what is the speed of the car after traveling 500 meters?

1. $0 \mathrm{~m} / \mathrm{s}$
2. $71 \mathrm{~m} / \mathrm{s}$
3. $100 \mathrm{~m} / \mathrm{s}$
4. $141 \mathrm{~m} / \mathrm{s}$
5. $200 \mathrm{~m} / \mathrm{s}$

Force
$1 \times 10^{4} \mathrm{~N}$

1. $0 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\omega_{\text {Met }} & =\Delta K \\
& =1 m V_{1}^{2}-1 m y_{i}^{2}
\end{aligned}
$$

5. $200 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\omega_{\text {Net }} & =\Delta K \\
& =\frac{1}{2} a V_{f}^{2}-\frac{1}{2} m y_{i}^{2} \\
2,500,000 & =\frac{1}{2}(1000) V_{f}^{2} \\
V_{f} & =71 \frac{m}{s}
\end{aligned}
$$

Springs:

$$
F_{s p}=2 m g
$$

Hooke's Law

$$
\begin{aligned}
F_{\text {sp }}= & k(\Delta x) \\
& \uparrow \\
& \text { spring }_{\text {constant }}
\end{aligned}
$$

Find the change in KE of each ball:
1)

$$
\begin{aligned}
& \underset{\substack{3 \\
2 \mathrm{~kg}}}{\substack{\text { initial }}} \\
& \begin{array}{c}
\text { final } \\
\underset{l_{\mathrm{m}}^{\mathrm{s}}}{\rightarrow}
\end{array} \\
& \Delta K \\
& \Delta K=K_{f}-K_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m_{i}^{2} \\
& =\frac{1}{2}(2)(1)^{2}-\frac{1}{2}(2)(3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1-9 \\
& =-8 \mathrm{~J}
\end{aligned}
$$

2) 2 kg

$$
\begin{aligned}
\Delta K & =K_{f}-k_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} w v_{n-}^{2} \\
& =25-9 \\
& =16 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\Delta k & =k_{f}-k_{i} \\
& =9-9 \\
& =0 \mathrm{~J}
\end{aligned}
$$

Find the work done by every force acting on the box and the final speed of the box

Force	work Done on Boy
N	0

$$
\begin{aligned}
w_{\text {vex }} & =\Delta k \\
& =k_{f}-k_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m y_{i}^{2} \\
163 & =\frac{1}{2}(10) v_{f}^{2} \\
v_{f} & =5.7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

