Goals for the Lecture:

1) Given one of the following three graphs: x vs t, v vs t, and a vs t, be able to draw the other two
2) Be able to solve 1-D kinematics problems (constant acceleration) using the equations and a graphical approach

Book Prob

$$
2-24
$$

$$
\text { acceleration }=\text { slope }=\frac{\Delta V}{\Delta t}=\frac{15.5}{1.81}=8.58 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\text { Find } t_{2}: \quad a=\frac{2 v_{i}}{t_{2}}
$$

$$
\begin{gathered}
t_{2}=3.61 \mathrm{~s} \\
\Delta x_{2}=\frac{1}{2}\left(2 v_{i}\right) t_{2}=56 \mathrm{~m}
\end{gathered}
$$

worksheet
given V vs t

$$
p .3 x
$$

plot a vs t
and x vs $t \quad($ let $x=0$ at $t=0)$

A car starting from rest speeds up to $30 \mathrm{~m} / \mathrm{s}$ with a constant acceleration over a time of 10 seconds. Then, it travels at 30 m / s for 10 seconds, and finally brakes to a stop in 20 seconds with a constant deceleration. Which of the following graphs represents its graph of speed versus time?

v

1. A
2. B
3. C
4. D

Which One represents acceleration vs time?
How far does it travel in the 40 second time period?

1. 100 m
2. 200 m

$$
1 \quad \text { Area }=\frac{1}{2}(10)(30)+(10)(30)+\frac{1}{2}(20)(30)
$$

1. 100 m
2. 200 m
3. 400 m
4. 800 m
5. None of the above.

Book Prob $2-28$

$$
\begin{aligned}
& \text { given: } \quad \Delta x=40 \mathrm{~m} \\
& A=8.5 \mathrm{~s} \\
& v_{f}=2.8 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \left.1^{s t}\right) \text { Graphically: } \\
& \frac{1}{2}(8,5)\left(v_{i}-2,8\right)+(8,5)(2,8)=40 \\
& v_{i}=6.61 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { Slope }=a=\frac{\Delta v}{\Delta t}=\frac{V_{f}-V_{i}}{\Delta t}=\frac{2.8-6.61}{8.5}=-0.448 \frac{\mathrm{~m}}{5^{2}}
\end{aligned}
$$

$2^{u l}$)kinematics equations: (since constant acceleration)

$\Delta x\left\{\right.$| $\begin{array}{l}x \text {-motion } \\ \hline \dot{x}_{i} \\ x_{f}\end{array}$ | |
| :--- | :--- |
| $\begin{array}{l}v_{i}\end{array}$ | 40 m |
| v_{f} | 2.8 |
| a | m |
| A | 8.5 |

$$
\begin{aligned}
& x_{f}=x_{i}+\left(\frac{v_{i}+v_{f}}{2}\right) \pi \\
& \text { Solve for } v_{i}: \quad 40=0+\left(\frac{v_{i}+2.8}{2}\right) 8.5 \\
& v_{i}=6.61 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { use } \quad v_{f}=v_{i}+a t \\
& \text { Solve for } a \text { : } \quad 2.8=6.61+a(2.8) \\
& a=-0.448 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

1. A

2. B
3. C

4.
5.

Which of the graphs of distance versus time corresponds to the graph of acceleration versus time shown on the right?

Which of the graphs of acceleration versus time corresponds to the graph of distance versus time shown on the right?

Freefall
acceleration of gravity: $g=9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

given: v_{i}, H
find: v_{f}

1) Defoe origin and Positive direction
2) Fill in chart:

3) Choose equation:

$$
y_{f}=y_{i}+v_{i} t+\frac{1}{2} a t^{2}
$$

Solve for A
of

$$
v_{f}^{2}=v_{i}^{2}+2 a>y
$$

Solve for V_{f}
V_{f} should be Negative
use: $\quad V_{0}=30 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\begin{aligned}
y_{f}= & y_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
0= & 50+(-30) t+\frac{1}{2}(-9.8) t^{2} \\
& \quad<-749
\end{aligned}
$$

$$
\text { use: } \quad V_{0}=30 \frac{\mathrm{~m}}{\mathrm{~s}} \quad 0=50+(-30) t+\frac{1}{2}(-9.8) t^{-}
$$

$$
H=50 \mathrm{~m}
$$

$$
A=\left\{\begin{array}{l}
-7.49 \mathrm{~s} \\
+1.36 \mathrm{~s}
\end{array}\right.
$$

$$
v_{f}=-43.4 \quad \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Now: throw ball up

$$
\int_{\uparrow}^{\hat{\uparrow} \vec{v}_{i}=+v_{0}} \quad \text { given: } \quad v_{0}=30 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

find: $\quad v_{f}$

$$
\begin{aligned}
& V_{f}^{2}=v_{i}^{2}+2 a s y \\
& V_{f}^{2}=(30)^{2}+2(-9.8)(0-50) \\
& V_{f}= \pm 43.4 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& V_{f}=-43.4 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { must }
\end{aligned}
$$

