Conservative and non-conservative forces
gravity is a conservative force \rightarrow the work done by gravity is the same for every path between points A and B

$$
\begin{aligned}
w_{1} & =-m g y \\
w_{2} & =w_{1}+w_{1}+w_{1} \\
& =-m_{g y}+(-m g d)+\text { rod } \\
& =-m g y \\
w_{3} & =w_{1}+w_{1}+w_{1} \\
& =0-m g y+0 \\
& =-m g y
\end{aligned}
$$

$$
W_{A \rightarrow B}=m g y_{B}-m g y_{A}
$$

For every conservator ar cor a th a

$$
\begin{aligned}
& \text { avery evcour a } \\
& \text { force we with ere }
\end{aligned}
$$

\leftarrow The spring force is also a conservative force

$$
\begin{aligned}
W=\quad \frac{1}{2} k x_{f}^{2} & -\frac{1}{2} k x_{i}^{2} \\
& \therefore u_{s p}
\end{aligned}
$$

$$
=u_{s p}
$$

Friction is a Non-consersatine force

Example Problem
A rubber ball is launched from a spring gun. It hits a block and bounces back with half of its incoming speed. How far up the incline does the block slide before coming to rest? The horizontal surface is frictionless, but there is friction on the incline surface.

given: $\quad k=400 \frac{\mathrm{~N}}{\mathrm{~m}}$

$$
\begin{aligned}
& x_{i}=0.3 \mathrm{~m} \\
& m_{R B}=0.2 \mathrm{~kg} \quad \text { (rubber ball) } \\
& m_{B}=1.5 \mathrm{~kg} \quad \text { (block) } \\
& \theta=30^{\circ} \\
& \mu_{k}=0.15
\end{aligned}
$$

Make a timeline:
2 times you should always have on your timeline are the instant before the collision and the instant after the collision.

1)

$$
\begin{aligned}
& E_{1}=E_{2} \\
& \left(U_{S P}\right)_{1}=(K)_{2} \\
& \frac{1}{2} K x_{i}^{2}=\frac{1}{2} m_{R B}\left(V_{R B}\right)_{2}^{2} \\
& 400(0.3)^{2}=(0.2)\left(V_{R B}\right)_{2}^{2} \\
& \quad\left(V_{R B}\right)_{2}=13.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } \\
& \vec{P}_{2}=\vec{P}_{3} \rightarrow+ \\
& \left(\vec{P}_{R B}\right)_{2}+\left(\vec{P}_{B}\right)_{2}=\left(\vec{P}_{R B}\right)_{3}+\left(\vec{P}_{B}\right)_{3} \rightarrow+ \\
& m_{R_{B}}\left(\vec{V}_{R B}\right)_{2}+m_{B}(\vec{V} / B)_{2}^{0}=m_{R_{B}}\left(\vec{V}_{R B}\right)_{3}+m_{B}\left(\vec{V}_{B 3}\right)_{3} \rightarrow+ \\
& (0.2)(13.4)+0=(0.2)\left(-\frac{13.4}{2}\right)+(1.5)\left(V_{B}\right)_{3} \\
& \frac{3}{2}(0.2)(13.4)=(1.5)\left(V_{B}\right)_{3} \\
& \left(V_{B}\right)_{3}=2.68 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

3)

$$
\begin{aligned}
& E_{3}+\omega_{\text {friction }}=E_{4} \\
& k_{3}+\omega_{\text {friction }}=\left(U_{9}\right)_{3} \\
& \frac{1}{2} m_{B}\left(v_{B}\right)_{3}^{2}-\mu_{k} N d=m_{B} g h
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} m_{B}\left(v_{B}\right)_{3}^{2}-\mu_{k} N d=m_{B} g h \\
& N=m_{B} g \cos \theta \\
& h=d \sin \theta \\
& \frac{1}{2} m /{ }_{B}\left(V_{B}\right)_{3}^{2}-H_{k} m / B g \cos \theta d=m /{ }_{B} g d \sin \theta \\
& \frac{1}{2}(2.68)^{2}-(0.15)(9.8)\left(\cos 30^{\circ}\right) d=(9.8)\left(\sin 30^{\circ}\right) d \\
& 3.59=(4.9+1.27) d \\
& 3.59=6.17 \mathrm{~d} \\
& d=0.582 \mathrm{~m}
\end{aligned}
$$

