Practice Homework Problems

I will list some typical problems involving universal gravity and gravitational potential energy here and will work out the solutions below.

Use the following constants for these problems:
G (universal gravitational constant) $=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$\mathrm{m}_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}$
$R_{\text {earth }}=6.4 \times 10^{6} \mathrm{~m}$
$\mathrm{m}_{\text {moon }}=7.4 \times 10^{22} \mathrm{~kg}$
$R_{\text {moon }}=1.7 \times 10^{6} \mathrm{~m}$

1) Three small masses are located at the following locations:
$m_{1}=10 \mathrm{~kg}$ at $(0,0)$
$\mathrm{m}_{2}=20 \mathrm{~kg}$ at $(4,0)$
$m_{3}=30 \mathrm{~kg}$ at $(0,3)$
Find the net gravitational force on m_{1}, due to the other two masses.
2) Find the free fall acceleration on the surface of the moon.
3) A satellite is in circular orbit around the earth at an altitude of $2 \times 10^{6} \mathrm{~m}$ above the earth's surface ($m_{\text {satellite }}=100 \mathrm{~kg}$).
a. Find the gravitational force on the satellite due to the earth.
b. Find the potential energy of the satellite / earth system.
4) If we ignore air resistance and the rotation of the earth, to what altitude will a projectile rise if launched straight up from the surface of the earth with a speed of $10,000 \mathrm{~m} / \mathrm{s}$?
5) If you launch a projectile straight up from the surface of the moon and you do not want it to return to the moon's surface, what launch speed is needed? This is called the escape speed, the speed a projectile needs to have when it leaves to never return.
6) If a meteor starts out at rest very far from the earth, what speed will it have when it gets to the top of earth's atmosphere (about $40,000 \mathrm{~m}$ above the surface of the earth)?

Solutions:

1)

$$
\begin{aligned}
& \text { Force between } m_{1} \text { and } m_{2} \text { : } \\
& F_{12}=\frac{G m_{1} m_{2}}{v_{12}^{2}}=\frac{\left(6.67 \times 10^{-11}\right)(10)(20)}{4^{2}} \\
& =8.34 \times 10^{-10} \mathrm{~N}[\text { right } \rightarrow] \\
& \text { Net force is the vector sum of those } 2 \text { forces: }
\end{aligned}
$$

$$
\vec{F}_{\text {Nat }}=\vec{F}_{12}+\vec{F}_{13}
$$

$$
\begin{aligned}
& F_{\text {Net }}=\sqrt{\left(2.22 \times 10^{-9}\right)^{2}+\left(8.34 \times 10^{-10}\right)^{2}}=2.37 \times 10^{-9} \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{2.22 \times 10^{-9}}{8.34 \times 10^{-10}}\right)=69.4^{\circ}
\end{aligned}
$$

2) since $F=m g$ and $F=\frac{G m M}{R^{2}}$

$$
\left.\begin{array}{rl}
g & =\frac{G M}{R^{2}} \text { on surface of a } \\
\text { planet or moon }
\end{array}\right] \begin{aligned}
g_{\text {moon }} & =\frac{G M_{\text {moon }}}{R_{\text {man }}}=\frac{\left(6.67 \times 10^{-11}\right)\left(7.4 \times 10^{22}\right)}{\left(1.7 \times 10^{6}\right)^{2}} \\
& \left.=1.71 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \text { (about } \frac{1}{6} g_{\text {earth }}\right)
\end{aligned}
$$

3) a) $F=\frac{G m_{S} M_{E}}{r^{2}}$

$$
\begin{aligned}
r & =R_{E}+\text { Altitude } \\
& =6.4 \times 10^{6} \mathrm{~m}+2 \times 10^{6} \mathrm{~m} \\
& =8.4 \times 10^{6} \mathrm{~m} \\
F=\frac{\left(6.67 \times 10^{-11}\right)(100)\left(6 \times 10^{24}\right)}{\left(8.4 \times 10^{6}\right)^{2}} & =567 \mathrm{~N}
\end{aligned}
$$

b)

$$
\begin{aligned}
U_{g} & =-\frac{G m_{S} M_{E}}{r}=-\frac{\left(6.67 \times 10^{-11}\right)(100)\left(6 \times 10^{24}\right)}{\left(8.4 \times 10^{6}\right)} \\
& =-4.76 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

4) Use energy. But, since v_{i} is so large, we will assume we cannot use $U_{g}=$ ugly (only good Near surface of the Earth) and we will use $U_{g}=\frac{-G M_{1} m_{2}}{r}$

$$
\begin{aligned}
& E_{;}=E_{f} \quad \text { (ignoring air resistance) } \\
& K_{i}+\left(U_{g}\right)_{i}^{2}=K_{f}+\left(U_{g}\right)^{\ell} \text { cannot set one of these to } \\
& \frac{1}{2} m V_{i}^{2}-\frac{G \mu M_{E}}{r_{i}}=\frac{1}{2} m v_{f}^{2}-\frac{G \not / M_{F}}{r_{f}} \\
& \text { zero. by can only de zero } \\
& \text { at } r=\text { infinity } \\
& m=\text { mass of projedile } \\
& r_{i}=R_{E} \text { (launching from surface of Earth) } \\
& V_{i}=10,000 \mathrm{~m} \quad \text { (given) } \\
& v_{f}=0 \quad \text { (max height) }
\end{aligned}
$$

Solve for r_{f}

$$
\begin{aligned}
& \frac{1}{2} V_{i}^{2}-\frac{G M_{E}}{R_{E}}=-\frac{G \Delta X_{E}}{r_{f}} \\
& \begin{array}{r}
\frac{1}{2}(10,000)^{2}-\frac{\left(6.67 \times 10^{-11}\right)\left(6 \times 10^{24}\right)}{6.4 \times 10^{6}}=-\frac{\left(6.67 \times 10^{-11}\right)\left(6 \times 10^{24}\right)}{r_{f}} \\
r_{f}
\end{array}=3.2 \times 10^{7} \mathrm{~m} \text { from center of Earth } \\
& \text {-Ititude }=r_{r}-R_{F}=2.55 \times 10^{7} \mathrm{~m}
\end{aligned}
$$

5) Just like the previous problem:

$$
\begin{gathered}
E_{i}=E_{f} \\
k_{i}+\left(u_{g}\right)_{i}=k_{f}+\left(u_{g}\right)_{f} \\
\frac{1}{2} m v_{i}^{2}-\frac{G m M_{m}}{r_{i}}=\frac{1}{2} m v_{f}^{2}-\frac{G m M_{m}}{r_{f}}
\end{gathered}
$$

In order for it not to return it must just make it to $r=i n f i n i t y$. In other words, its speed goes to zero just as its distance goo to infinity. $\quad v_{f} \rightarrow 0$

$$
r_{f} \rightarrow \infty
$$

$$
\begin{aligned}
\frac{1}{2} m v_{i}^{2}-\frac{G_{m} M_{m}}{R_{m}} & =0-0 \\
\frac{1}{2} m v_{i}^{2} & =\frac{G m M_{m}}{R_{m}} \\
v_{i} & =\sqrt{2 \frac{\left(6.67 \times 10^{-11}\right)\left(7.4 \times 10^{22}\right)}{1.7 \times 10^{6}}} \\
& =2,410 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

6) let's use energy:

$$
\begin{gathered}
E_{i}=E_{f} \\
k_{i}+\left(u_{g}\right)_{i}=K_{f}+\left(U_{g}\right)_{f} \\
\frac{1}{2} m v_{i}^{2}-\frac{G m M_{E}}{r_{i}}=\frac{1}{2} m v_{f}^{2}-\frac{G m M_{E}}{r_{f}}
\end{gathered}
$$

meters starts fran rest $V_{i}=0$

$$
\begin{aligned}
0-0 & =\frac{1}{2} \mu v_{f}^{2}-\frac{G r_{i}}{}=\infty \\
\frac{1}{2} v_{f}^{2} & =\frac{G M_{E}}{r_{f}} \\
r_{f} & =R_{E}+40,000 \mathrm{~m} \\
& =6.4 \times 10^{6}+40,000 \\
& =6.44 \times 10^{6} \mathrm{~m}
\end{aligned} \quad \begin{aligned}
& \frac{2\left(6.67 \times 10^{-11}\right)\left(6 \times 10^{24}\right)}{6.44 \times 10^{6}} \\
& V_{f}=\sqrt{11,148 \frac{\mathrm{~m}}{\mathrm{~s}}}
\end{aligned}
$$

