Goals for the Lecture:

1) Know how to calculate the angular momentum of objects moving in a straight lines
2) Know how to calculate the angular momentum of rotating rigid objects
3) Be able to use conservation of angular momentum to solve rotational collision problems

$$
\text { Pre-Lecture } 3
$$


$D$


$$
\begin{aligned}
& m_{1}=m_{2}=m_{3}=m_{4}=6.55 \mathrm{~kg} \\
& L_{1}=L_{2}=L_{3}=L_{4}=0.241 \mathrm{~m} \\
& I_{\text {rod rotati-y about center }}=\frac{1}{12} \mathrm{~mL}^{2} \\
& I_{\text {sod rotation about end pt }}=\frac{1}{3} m L^{2} \\
& I_{A}=I_{1}+I_{2}+I_{3}+I_{4}=4 I_{1}=4\left(\frac{1}{12} \mathrm{~mL}^{2}\right)=0.127 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2} \\
& I_{B}=I_{1}+I_{2}=\frac{1}{3} m_{1} L_{1}^{2}+\frac{1}{12} m_{2} L_{2}^{2}=0.159 \mathrm{~kg} \mathrm{~m}{ }^{2} \\
& I_{c} \rightarrow \text { file one long rod } \begin{aligned}
m_{\text {data }} & =2 \mathrm{~m} \\
L_{\text {total }} & =2 \mathrm{~L}
\end{aligned} \quad I_{c}=\frac{1}{3} m_{\text {total }} L_{\text {total }}^{2} \\
& =\frac{1}{3}(13.1)(0.482)^{2}=1.01 \mathrm{~kg} \mathrm{~m}^{2} \\
& \text { Like } 2 \text { rods } \\
& I_{c}=I_{1}+I_{2}=\underbrace{I_{c m}+M, D^{2}}_{I_{1}}+I_{2} \\
& =\underbrace{\frac{1}{12} m_{1} L_{1}^{2}+m_{1}\left(\frac{3 L}{2}\right)^{2}}_{I_{1}}+\underbrace{\frac{1}{3} m_{2} L_{2}^{2}}_{I_{2}} \\
& =\left(\frac{1}{12}+\frac{9}{4}+\frac{1}{3}\right) m L^{2}=1.01 \mathrm{~kg} \mathrm{~m}^{2} \\
& I_{0}=I_{1}+I_{2}+I_{3}=\frac{1}{3} m_{1} L_{1}^{2}+\frac{1}{12} m_{2} L_{2}^{2}+\underbrace{I_{c m}+m_{3} D^{2}}_{I_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3} m_{1} L_{1}^{2}+\frac{1}{12} m_{2} L_{2}^{2}+\underbrace{\frac{1}{12} m_{3} L_{3}^{2}+m_{3} L^{2}}_{I_{3}} \\
& =\left(\frac{1}{3}+\frac{1}{12}+\frac{13}{12}\right) m L^{2}=0.571 \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

Angular momentum: $\vec{L}$

$$
L=\left\{\begin{array}{rr}
I w & \text { object the is rotating } \\
m v d_{\perp} & \text { object moving in a straight line } \\
\hat{\imath}^{\text {perpendicular distance from live of velocity to the }} \begin{array}{r}
\text { axis of rotation }
\end{array}
\end{array}\right.
$$

Example:

$L \neq 0$
Rotating $\rightarrow$ must have angular momentum

So, we must have angular momentum initially

$$
L \neq 0
$$

So, the kid must have angular momentum
or
initial
final


$$
L_{f}=0
$$

$$
L_{i}=0
$$

Angular Momentum:

$$
\vec{L}_{i}=\vec{L}_{f}
$$



Application:
Drag race car
Large I prevents
 car from flipping over when it tries to conserve angular momentum

Ballistic Pendulum:

used Linear momentum be cause we
assumed the rod was massless
For this problem:


$$
\text { use } L_{A}=L_{B}
$$

use $E_{B}=E_{c}$
we reed to use angular momentum given: clay ball:

$$
\begin{aligned}
& m_{c}=0.6 \mathrm{~kg} \\
& V_{A}=5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& r_{\text {clay }} \ll l \quad(\text { Like a point mass })
\end{aligned}
$$

Rod:
Solid, uniform rod

$$
\begin{aligned}
& l=1.2 \mathrm{~m} \\
& m_{R}=0.3 \mathrm{~kg}
\end{aligned}
$$

find: $\theta$ (max angle)

$$
\begin{aligned}
& L_{A}=L_{B} \\
& \left(L_{A}\right)_{\text {clay }}+\left(L^{A}\right)_{\text {rod }}^{0}=\left(L_{B}\right)_{\text {clay }+ \text { rod }} \\
& m_{C} V_{A} d_{\perp}=\left(L_{B}\right)_{\text {cleft }} \\
& m_{C} V_{A} l=I_{\text {total }} \omega_{B} \\
& m_{c} v_{A} l=\left(I_{\text {clay }}+I_{\text {sid }}\right) \omega_{B} \\
& m_{c} v_{A} l=\left(m_{c} l^{2}+\frac{1}{3} m_{R} l^{2}\right) w_{B} \\
& (0.6)(5)(1.2)=\underbrace{[0.6)(1.2)^{2}+\frac{1}{3}(0.3)(1.2)^{2}}_{1.008}] \omega_{B}
\end{aligned}
$$



$$
w_{B}=3.57 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Now, use energy to go from time $B$ to tome $C$

$$
\begin{aligned}
& E_{B}=E_{c} \quad N o f r i c t i o n ~ o r ~ e x t e r n a l ~ f o r c e s ~ \\
& \left(K_{\text {rotational }}\right)_{B}=\left(U_{g}\right)_{c} \\
& \frac{1}{2} I_{b, t h} \omega_{B}^{2}=m_{c} g h_{\text {icy }}+m_{r i d} g h_{R} \\
&
\end{aligned}
$$



$$
\begin{aligned}
l \cos \theta+h_{C} & =l \\
h_{c} & =l-l \cos \theta \\
h_{R} & =\frac{l}{2}-\frac{l}{2} \cos \theta
\end{aligned}
$$

$$
\begin{gathered}
h_{R}=\frac{1}{2} h_{\text {clay }} \\
\frac{1}{2} I_{\text {batu }} w_{B}^{2}=M_{c} g h_{\text {clay }}+m_{\text {rod }} g \frac{h_{\text {clay }}}{2} \\
\frac{1}{2}(1.008)(3.57)^{2}=(0.6)(9.8) h_{\text {clay }}+(0.3)(9.8) \frac{h_{\text {cl. })}}{2} \\
h_{\text {clay }}=0.245 \mathrm{~m}=l-l \cos \theta
\end{gathered}
$$

$$
\theta=37.3^{\circ}
$$

Applications:

Spinning projectiles to get them to travel straight

- Football (American football)
- bullets

Problem: kid runs and jumps onto Mersy-go-round

$$
\text { find: } w_{f}
$$

given: $m_{k=2}=40 \mathrm{~kg}$

$$
V=3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
m_{\text {mgR }}=100 \mathrm{ky}
$$

$$
R=2 \mathrm{~m}
$$

shape: solid disk

final


$$
\begin{aligned}
& \left(L_{k i l}\right)_{i}+\left(L_{\text {mgR }}\right)_{i}=\left(L_{\text {both together }}\right)_{f} \\
& m_{k i l} v d_{\perp}+0=I_{\text {both }} W_{f}
\end{aligned}
$$

$$
\begin{aligned}
m_{k i d} \vee d_{1}+ & =I_{b=t a} W_{f} \\
m_{k=d} \vee R & =\left(I_{k i d}+I_{m g R}\right) \omega_{f} \\
& =\left[M_{k=2} R^{2}+\frac{1}{2} m_{m g r} R^{2}\right] \omega_{f} \\
(40)(3)(2) & =\left[(40)(2)^{2}+\frac{1}{2}(100)(2)^{2}\right] \omega_{f} \\
240 & =(160 \\
w_{f} & =\frac{2}{3} \frac{r_{a d}}{s}
\end{aligned}
$$

Find angular momentum of the kid about the axis of rotation at the center of the
a)
 mersy-go-round

$$
L_{k i d}=M_{k i d} V \frac{R}{2}
$$

b)


Since $d_{\perp}=0$

Problem'.
$m$
given: hanging mass: $m=5 \mathrm{~kg}$
Pulley mass: $m_{p}=4 \mathrm{~kg}$ solid disk

$$
R=0.3 \mathrm{~m}
$$

Find. i) tension in Rope
21 a cceleration of hanging

FBD

polley


$$
\begin{aligned}
& \bar{\Sigma} \ddagger=m a \downarrow t \\
& \Sigma \tau= \pm \alpha \Omega_{t} \\
& m g-T=m a \\
& \tau_{T}+\tau / \tau_{\text {spport }}^{0}+\tau_{m g}^{0}=I \alpha
\end{aligned}
$$

$$
\begin{aligned}
& a=R \alpha \\
& T R=\left(\frac{1}{2} m_{p} R^{2}\right) \frac{a}{R} \\
& T=\frac{m_{p}}{2} a \\
& m g-\frac{m_{p}}{2} a=m a \\
& m g=\left(m+\frac{m p}{2}\right) a \\
& 5(9.8)=\left(5+\frac{4}{2}\right) a \\
& a=7 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& T=\frac{m_{p}}{2} a=14 \mathrm{~N}
\end{aligned}
$$

