Review for exam
From the homework:
3) A certain amusement park ride consists of a large rotating cylinder of radius $R=2.85 \mathrm{~m}$. As the cylinder spins, riders inside feel themselves pressed against the wall. If the cylinder rotates fast enough, the frictional force between the riders and the wall can be great enough to hold the riders in place as the floor drops out from under them. If the cylinder makes 0.570 rotations per second, what is the magnitude of the normal force FN between a rider and the wall, expressed in terms of the rider\'s weight W?

$$
\sum F_{y}=0 \quad \text { int moshing } \cos ^{2} \text {-diction }
$$

$$
=\frac{m g}{g} \frac{v^{2}}{R}
$$

$$
=W \frac{v^{2}}{g R}
$$

$$
V=0.57 \frac{\mathrm{ver}}{\text { second }} \frac{2 \pi R \mathrm{~m}}{\text { ser }}=2 \pi R(0.57) \frac{\mathrm{m}}{\mathrm{~s}}=10.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

a) $\quad N=\frac{v^{2}}{g^{2}} W=\frac{(10.2)^{2}}{(9.8)(2.85)} W=3.73 W$
b) $\quad f_{s}=m g$

$$
H_{s} N=m g
$$

\uparrow Neb ld

$$
\left(H_{s}\right)_{\min }=\frac{m g}{N}=\frac{m g}{3.73(m g)}=\frac{1}{3.73}=0.268
$$

4) A $5.41-\mathrm{kg}$ ball hangs from the top of a vertical pole by a 2.11 -m-long string. The ball is struck, causing it to revolve around the pole at a speed of $4.29 \mathrm{~m} / \mathrm{s}$ in a horizontal circle with the string remaining taut. Calculate the angle, between 0° and 90°, that the string makes with the pole. Take $g=9.81 \mathrm{~m} / \mathrm{s} 2$.

$$
\begin{aligned}
& \sum F_{\text {rain }}=m a_{c p} t^{+} \\
& T \sin \theta=m \frac{v^{2}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \\
& T \cos \theta-m g=0 \\
& T \cos \theta=m g \\
& T=\frac{m g}{\cos \theta}
\end{aligned}
$$

What is R?

$$
\begin{aligned}
& T \sin \theta=\frac{m v^{2}}{2.11 \sin \theta} \\
& \text { lots of algebra to solve }
\end{aligned}
$$

Muddiest Points:

1) Friction:
a) Static vs kinetic friction
b) How to solve for mu
c) Using friction and static friction
2) Incline problems:
a) Sin vs cos
b) When does Fret $=0$
c) How to use $\mathrm{Fx}=\mathrm{ma}$ and $\mathrm{Fy}=\mathrm{ma}$
3) Circular motion
a) $A c p=v^{\wedge} 2 / R$ what are v and R
b) FBD for circular motion

Friction

Let go of block at rest, Does it slide down?

$$
\frac{F B D}{k^{2}}
$$

$$
\Downarrow
$$

$$
\begin{array}{cc}
m g \sin \theta-f_{s}=0 & N-m g \cos \theta=0 \\
f_{s}=m g \sin \theta & N=m g \cos \theta \\
\uparrow \quad\left(f_{s}\right)_{\max } \geq m g \sin \theta & \text { Does Not slide }
\end{array}
$$

$$
A_{s} N ? m g \sin \theta
$$

$$
M_{s} m g \cos \theta \quad ? \quad m g \sin \theta
$$

$$
\begin{aligned}
& m=10 \mathrm{~kg} \\
& g=9.8 \frac{\mathrm{~m}}{5^{2}} \\
& \theta=20^{\circ} \\
& \mu_{s}=0.3 \\
& \mu_{k}=0.15
\end{aligned}
$$

$$
27.6 \mathrm{~N}<33.5 \mathrm{~N}
$$

it Slides!
find the friction force acting on the block:
It is sliding: so, Kinetic friction

$$
\begin{aligned}
f_{k}=H_{k} N & =(0.15) m g \cos \theta \\
& =(0.15)(10)(9.8) \cos 20^{\circ} \\
& =13.8 \mathrm{~N}
\end{aligned}
$$

Incline and pulley

given: $m_{1}=10 \mathrm{~kg}$

$$
m_{2}=20 \mathrm{~kg}
$$

$m_{2}=20 \mathrm{~kg}$
rope is massless pulley is massless V_{i} is up incline

pulley is massless
V_{j} is up incline

$$
\begin{aligned}
& F_{\text {pull }}=30 \mathrm{~N} \\
& \theta=40^{\circ} \\
& g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \mu_{k}=0.2
\end{aligned}
$$

Find: a of blocks
and
T in Rope

T is same everywhere in the rope
$T=F$

$$
\begin{aligned}
& T=F_{\text {hold }} \\
& T=\frac{1}{2}^{m g}
\end{aligned}
$$

$$
V_{F_{\text {hold }}}\left(\operatorname{mass}_{\text {mosses }} \operatorname{mot}^{t}\right)
$$

$$
\sum F=0 \quad \text { Not } \quad \text { mong }
$$

$$
\begin{array}{r}
T+T-m g=0 \\
T=\frac{1}{2} m g
\end{array}
$$

Pull boxes at constant Speed:

given:

$$
\begin{aligned}
& m_{1}=10 \mathrm{k} \\
& m_{2}=20 \mathrm{ky} \\
& \mu_{k}=0.2 \\
& \theta=30^{\circ}
\end{aligned}
$$

$$
\underbrace{a_{1}}_{z F_{1}=0}
$$

$$
\begin{aligned}
& \mathbb{C}>\text { to find } A \\
& \sum F_{11}=m a_{l \prime} \rightarrow \quad \sum F_{+}=m q_{+}^{\circ} \\
& T_{1}-\left(f_{k}\right)_{1}=m_{1} g_{11}^{0} \times N_{1}-m_{1} g=0
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=\left(f_{k}\right)_{1} \\
& =\mu_{k} N_{1} \\
& =\mu_{k} M_{1} g \\
& =(0.2)(10)(9.8) \\
& =19.6 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{11}=M_{2} a_{11} \\
& N_{2}+T_{2} \sin \theta-m_{2} g=0 \\
& N_{2}=m_{2} g-T_{2} \sin \theta \\
& T_{2} \cos \theta-\left(f_{k}\right)_{2}-T_{1}=0 \\
& T_{2} \cos \theta-\mu_{k}\left(m_{2} g-T_{2} \sin \theta\right)-T_{1}=0 \\
& T_{2} \cos \theta-\mu_{1}\left(m_{2} g-T_{2} \sin \theta\right)-19.6=0 \\
& T_{2} \cos 30^{\circ}-(0.2)\left[(20)(9.8)-T_{2} \sin 30^{\circ}\right]-10.6=0 \\
& T_{2}\left[\cos 30^{\circ}+(0.2) \sin 30^{\circ}\right]-(0.2)(20)(9.8)-19.6=0 \\
& T_{2}[0.966] \quad=58.8 \\
& T_{2}=60.9 \mathrm{~N}
\end{aligned}
$$

