Goals for the Lecture:

- 1) Understand Newton's First Law, inertia, and the role it plays in motion
- 2) Understand Newton's Second Law, forces, and the role they play in acceleration
- 3) Be able to draw free body diagrams for objects on flat surfaces

$$V_f^2 = V_i^2 + 2a \Delta y$$

$$O = V_i^2 + 2a (y_f - y_i)$$

$$\int_{S_0 | v_f|} f_{\sigma \Gamma} V_i$$

zud) 2-D Problem

X-motion

Y= motion

Y= 0

Y= 20

Y; V; cos40

V; V; cos40

V; V; sin

V= x to solve for time

 $t = \frac{6 \times 20}{V_{x}} = \frac{20}{V_{y} \cdot \cos 40}$ use t in y-matica

use t in y-morean

	$a\rangle$ E
	e) No stiding between hand of block (moving together)
	(moving to getter)
	7/5
	· Tate
Application.	s. Inertia Seat belts
	Chips and Salson
	- Curting Pancakes
	- Shaking objects to see which is hearier
	- getting ketchup out of the bottle
	Top: Fret = m/a = 0
Worksheet P. 85	Top: Fret = m/a = 0
Q, 85	all the same (Zero)
	Now, with acceleration, $\vec{\alpha} = 3 \text{ m} \longrightarrow \frac{1}{52}$
	Find Net force on each one:
	A) $\vec{F}_{\text{not}} = m \alpha = (2MX3) = 6M \rightarrow$
	B) Fret = (4M)(3) = 12M ->
	(c) $\vec{F}_{M+} = (3M)(3) = 9M \rightarrow$
	E) $(M)(3) = 3 M - P$
	T = M 10
	Bottom: F=M20 all are zero
	Now, Find the tension in each rope
	Now, tinx the transfer