Goals for the Lecture:

1) Given one of the following three graphs: x vs t, v vs t, and a vs t, be able to draw the other two
2) Be able to solve 1-D kinematics problems (constant acceleration) using the equations and a graphical approach
worksheet p. 37
given velocity vs. time, draw speed us. time:

Find: 1) Distance traveled for each one
2) Displacement for each one
3) acceleration for each one
4) graph acceleration vs. time for each
prot acceleration vs. time:

Find displacement: $\Delta \vec{x}$
A) area under v vs t gives $\Delta \vec{x}$

B) V, Area $=\frac{1}{2}\left((0 \mathrm{~s})\left(8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=40 \mathrm{~m}\right.$

$$
\overrightarrow{\Delta x}=40 \mathrm{~m}
$$

c)

$$
\begin{aligned}
& \text { Alec }=-40 \mathrm{~m} \\
& \qquad \Delta x=-40 \mathrm{~m}
\end{aligned}
$$

1)) Area $=80 \mathrm{~m}$

$$
\Delta x=80 \mathrm{~m}
$$

$$
\text { F) Area }=\Delta x=20 \mathrm{~m}
$$

Frow

$$
\begin{aligned}
& v_{i}=2 \frac{\mathrm{~m}}{\mathrm{~s}} \longleftarrow \\
& v_{f}=\quad 6 \frac{\mathrm{~m}}{\mathrm{~s}} \longleftarrow
\end{aligned}
$$

if Right is t disection : $\rightarrow+$

$$
a=\underline{v_{f}-v_{i}}=-\underline{-6-(-2)}=-\frac{4}{2}=-2 \frac{m}{s^{2}}
$$

it right is $\begin{aligned} & \text { r in................ } \\ & a=\frac{v_{f}-v_{i}}{t}=\frac{-6-(-2)}{2}=-\frac{4}{2}=-2 \frac{m}{s^{2}}\end{aligned}$ to the left
if Left is positive: $+\longleftarrow$

$$
a=\frac{6-2}{2}=\frac{4}{2}=2 \frac{m}{s^{2}}
$$

positive, so
to the left

$$
\begin{aligned}
& V_{i}=2 \frac{\mathrm{~m}}{\mathrm{~s}} \longrightarrow \\
& v_{f}=6 \frac{\mathrm{~m}}{\mathrm{~s}} \longleftarrow
\end{aligned}
$$

$$
\text { if } \rightarrow t: a=\frac{v_{f}-v_{i}}{t}=\frac{-6-(+2)}{2}=-\frac{8}{2}=-4 \frac{m}{s^{2}}
$$

$4 \frac{\mathrm{~m}}{\mathrm{s2}}$ to the left

$$
\text { if } \quad: \longleftarrow \quad a=\frac{v_{f}-v_{i}}{2}=\frac{6-(-2)}{2}=+\frac{8}{2}=+4 \frac{m}{s^{2}}
$$

$4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ to the left

Example: A truck goes 40 m in 8.5 s while slowing
to a final speed of $2.8 \frac{\mathrm{~m}}{\mathrm{~s}}$. If a is constant, find V_{i} and a.
(st) using graphs to solve:

$$
\begin{aligned}
v_{i} & =6.61 \frac{\mathrm{~m}}{\mathrm{~s}} \\
a & =\text { slope }{ }_{0} f \text { vs } \\
& =\frac{v_{f}-v_{i}}{t}=\frac{2.8-6.61}{8.5} \\
& =-0.448 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

qua) using equations:
$i^{\text {st }} \rightarrow$ Define origin and positive direction

$$
t=0
$$

To get a :

$$
\begin{aligned}
V_{f} & =V_{i}+a t \\
2.8 & =6.61+a(8.5) \\
a & =-0.448 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

More Kinematics Problems:

$$
\begin{aligned}
& \text { X-motion } \\
& \Delta x\left\{\begin{array}{c|c}
x_{i} & 0 \\
x_{f} & 40 \mathrm{~m} \\
\hline v_{i} & ? \\
\hline v_{f} & 2.8 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\hline a & ? \\
\hline t & 8.5 \mathrm{~s}
\end{array}\right. \\
& \text { To find } v_{;} \text {(use an equation missing } a \text {) } \\
& x_{f}-x_{i}=\left(\frac{v_{i}+v_{f}}{2}\right) t \\
& 40-0=\left(\frac{v_{i}+2.8}{2}\right)(8.5) \\
& V_{i}=6.61 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow V_{f}=2.8 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \frac{10-\omega^{\prime}}{1} \\
& x=? \quad \longrightarrow+ \\
& t=8.5 \mathrm{~s} \\
& \text { positive to the Right }
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{\Delta v}{t} \\
& a t=\Delta v \\
& a t=v_{f}-v_{i} \\
& V_{f}=V_{i}+a t
\end{aligned}
$$

$$
\begin{aligned}
& X_{f}=X_{i}+V_{i} t+\frac{1}{2} a t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
& x_{f}-x_{i}=\left(\frac{v_{j}+v_{f}}{2}\right) t
\end{aligned}
$$

1) Throw a ball up into the air from the top of a cliff:

Given: $H=50 \mathrm{~m}$

$$
\left|\vec{v}_{i}\right|=30 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

find: V_{f} /the velocity of the ball the split second before
it hits the ground
A (time is ais)

1st) Define origin and positive direction
Let's use origin = bottom of cliff
and up $=$ positive direction
2nd) fill in table:

$$
\begin{aligned}
& \text { y-motion } \\
& \Delta y\left\{\begin{array}{c|c}
y_{;} & +50 \mathrm{~m} \\
y_{f} & 0 \\
\hline v_{;} & +30 \\
\hline \mathrm{~m} \\
\hline v_{f} & ? \\
\hline a & -9.8 \\
\frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}\right.
\end{aligned}
$$

Find v_{f} using:

$$
\begin{aligned}
V_{f}^{2} & =v_{i}^{2}+2 a \Delta y \\
& =(30)^{2}+2(-9.8)(0-50) \\
V_{f}^{2} & =\sqrt{1883} \\
V_{f} & = \pm 43.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
V_{f}=-43.4 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\begin{array}{l}
\text { going down) } \\
\text { so pi-k the } \\
\text { Negative Rod }
\end{array}\right)
$$

$$
\text { Find } \begin{aligned}
& t: \\
& V_{f}=v_{i}+a t \\
&-43.4=30+(-9.8) t \\
& t=7.48 \mathrm{~s}
\end{aligned}
$$

2) Throw a ball downward from top of cliff:

$$
\begin{aligned}
& \frac{k^{k}}{\Delta} \downarrow_{i} \downarrow \\
& \text { given: } \quad H=50 \mathrm{~m} \\
& \left|\vec{v}_{i}\right|=30 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

given: $H=50 \mathrm{~m}$

$$
\left|\vec{v}_{i}\right|=30 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

find: $\quad V_{f}, t$

1st) Define origin and positive direction

$$
\begin{aligned}
\text { origin } & =\text { bottom of cliff } \\
u_{p} & =\text { positive }
\end{aligned}
$$

aud) Fill in table:

y-motion
y_{i} +50 m y_{f} 0 v_{i} -30 v_{f} $?$ a -9.8 t m $\mathrm{~s}^{2}$

Find V_{f} :

$$
\begin{aligned}
V_{f}^{2} & =v_{i}^{2}+2 a \Delta y \\
& =(-30)^{2}+2(-9.8)(0-50) \\
v_{f} & = \pm 43.4 \\
V_{f} & =-43.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

To get time:

$$
\begin{gathered}
v_{f}=v_{i}+a t \\
-43.4=-30+(-9.8) t \\
t=1.375
\end{gathered}
$$

using $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

down

$$
\begin{aligned}
& t=3 \cdot v=0 \\
& t=45 \downarrow 10 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& t=5 s^{\circ} \\
& \quad 20 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
t=60
$$

$$
\ldots \quad(+7 n)-(+10)-10 \mathrm{~m}
$$

Change the graph to V vs A

and answer all the same questions if you were given v us t instead of x vs A

