
Course Syllabus

Overview
Welcome to Foothill College CS 2B, an intermediate computer programming course in
C++. In this course, you will enhance your knowledge and skills in object-oriented
programming. The most major topics of this course are inheritance and dynamic
memory allocation, which will lead us to build more complex classes and ultimately
some data structures.

Roadmap
The prerequisite for this course is CS 2A, where you learned some fundamental topics
such as control flow, loops, arrays, and an introduction to object-oriented
programming. In this course, you will refine your object-oriented programming skills,
learn about memory management, and combine these topics and several others as you
start to build data structures such as linked lists. At the end of this course, you'll be
prepared for 2C, where you'll build more data structures and learn about tradeoffs
when choosing the most advantageous data structure for the problem at hand.

Background, preparation, and growth!
Please be sure to review functions, loops, and arrays prior to the course, and come
meet with me or with a tutor at the STEM center, or write in to our discussion board, if
you have any questions. We will take some time at the beginning of the course to
discuss object-oriented programming from 2A before going much more in depth with
further topics.

The intermediate class is a HUGE time of growth. I have seen students come in who
are very solid on the 2A material as well as those who have forgotten some material or
feel a bit shaky on core concepts. No matter where you are coming in, you are
welcome in this class, and you will learn a lot if you work hard. Please get in touch with
me the first time you feel stuck in this class, even if you don't quite know what question
to ask. I have a good track record of guiding students of all initial levels through their
computer science courses.

Course logistics
Class meeting
Although this course is online, we have an optional in-person lecture on Mondays and
Wednesdays, 4:30-6 pm at room 4218 (STEM center room next to CS lab). You are
highly encouraged to attend the lectures to get the most out of this course.

This course is online. However, you must participate in the first two weeks of the
course to avoid being dropped from the course (per California law, not modifiable by
your professor!). Our "attendance" procedure (to show that you "attended" this online
course) will be to introduce yourself in the discussion board, fill in the
acknowledgement "quiz" which says you agree to the syllabus, briefly meet via video
chat or in person with the professor, and turn in something of academic nature.

General time to set aside for the course
This is a core course of the CS sequence covering key concepts that will be important
to your career in CS. The material covered in this course will require a substantial
amount of time. Make sure to set aside at least 15 hours per week to cover the
reading, practice questions, and programming assignments. I know it feels like a lot,
but you will emerge super well prepared for CS 2C and/or your C++ career goals!

Important dates
Our final is a flexible-time, online final scheduled for March 26 noon - March 28 noon;
you may choose any continuous window in this time to take the exam. Midterms will
similarly be scheduled for February 14-16 and March 7-9. (Amount of allowed time
TBD, but plan for a maximum of 2 hours for each of these exams).

Date range when you may take
the exam Exam

February 14 noon - February 16
noon

Midterm 1: Block off a continuous time block in this range to take your
exam (1-2 hour, TBD)

March 7 noon - March 9 noon Midterm 2: Block off a continuous time block in this range to take your
exam (1-2 hour, TBD)

March 26 noon - March 28 noon Final: Block off a continuous time block in this range to take your exam (1-
2 hour, TBD)

The course schedule is listed at the bottom of the syllabus.

Text and references
The most important reference for the course will be the lecture slides which I've
written and posted in the "Files" section. Please read these over and post any
questions in the discussion board, or attend the in-person lectures and ask questions
there.

The textbook for our course is Absolute C++ by Walter Savitch. The reason this book
was chosen was partly so that those of you who took 2A last term and had this book
could reuse the book. I have the 6th edition, but I read that the 3rd edition and onward
should be ok for this course. I personally really liked this book. The book is a reference
only; we will not have problems assigned out of the book. If you have any questions
before purchasing the textbook, please let me know.

I have also posted modules that were authored by Professor Michael Loceff, another
faculty member here at Foothill College.

We won't go in exactly the order of the textbook OR the modules; instead, take a look
at the schedule at the bottom of the syllabus to find the relevant reference material for
each week.

Instructor
My name is Professor Joanna or Professor Lankester; she/her/hers. I have worked as a
software engineer and data scientist in multi-national corporations, startups, and my
own small company, in addition to teaching. I love all things tech, have multiple
projects going (always!), and write code every day. I also love teaching, mentorship,
and Foothill College in general!

Office Hours
• Mondays after our lecture, 6-7 pm at the CS lab (STEM center room 4204) and by

video chat
• Or by appointment (in person or on video chat) if that time doesn't work for you

If you need a 1:1 meeting (e.g. other topics that don't pertain to other students), you
can either email me to set up an appointment, or wait around until others leave --
whichever you prefer.

Communication

Please post questions about the assignments in the discussions. If you have a question
that is specific to you (e.g. registration issues, etc), you can message me on Canvas or
email me at lankesterjoanna@fhda.edu.

Posting in Canvas discussions

The discussion board provides a great way to get quick help from each other and from
me when completing the programming labs. Do make use of it!

Please do not post homework code, whether a question or an answer, in
Canvas. Learning to write code involves synthesizing information, trying out examples
on your own, and figuring out why the code may not be working the first time.
Important to that process is your (and your classmates') opportunity to figure out the
code without seeing the answer ahead of time.

When asking a question in the discussion board, make the question as specific as
possible. If it's an error in your code you haven't been able to solve, describe what
you've tried. The more specific your question, the more likely someone will be able to
help.

Feel free to answer other students' questions; this is an encouraged and positive way
to interact with classmates. Do not post homework solution code, but you can refer
each other to where in the modules or book you found a similar example, or paste
in some code from lecture that helped.

Software needed
The free and recommended Integrated Development Environment (IDE) for this course
is Visual Studio for Windows and Xcode for Mac; the modules include instructions for
setup. Of course, if you prefer a different IDE and can set it up on your own, or prefer
an online code editor, you are welcome to use that instead.

Assessments and grading
The following assessments will constitute the indicated percentage of your final grade
in the course:

Category Percentage
Programming assignments 68
Practice Questions (PQs) 4
Midterm 1 6.75
Midterm 2 6.75
Final exam 13.5
Participation in surveys, discussion board,
lecture, video chat meetings 1

Importantly, note that the exams (midterms + final) are mandatory. You cannot
miss an exam and pass the class, even if the rest of your percentage score is over a
passing grade. A passing grade must be earned on the final in order to pass the
course.

Programming assignments
We will have 9 programming assignments (labs) in this course (8 regular-length and 1
mini-length). Programming assignments will usually be due at 2:59 pm (14:59). The
first three will be due on Tuesdays, but the dates will move slightly throughout the term
to give you an extra day on the weeks when we have a midterm. The labs must be your
own work. You may discuss them with other students, but write up your individual
solution.

The labs will constitute the majority of your effort in this course. The effort you put in
will pay off, just as it does in other skills you learn, such as sports, arts, or musical
instruments. Please set aside enough time each week to complete these assignments.
I encourage you to put in the effort to think through the problems on your own, and
then ask questions in the discussion forums as needed.

Code submission instructions

Please comment out your main using line comments (select the whole main, and use
command + / on a Mac or Ctrl + / on Windows; or, look in your editor menu for
something like, "Toggle comment"). Also put your output inside a comment block. Do
not edit the output; paste it exactly as produced. Please submit one text file, or else
whatever the assignment has requested.

Code should be submitted according to the style guide.

Lab grade policies

You will learn the most if you can fully debug your code and get it to run. Therefore late
work will be accepted (at a 10% penalty per day) for up to 3 days. Code that does not
run will be more heavily penalized, so it is worthwhile to complete the assignment even
if late. Code is considered one day late starting immediately after the submission time,
2 days late 24 hours thereafter, and 3 days late 24 hours after that.

You may resubmit your code as many times as you want until the due date. After that,
whatever I download when I start grading is the code that will determine your grade.
Please send all files in one submission batch. Otherwise, if you submit files
sequentially, then when I download the work, it will only download one of them. I will
not start grading before the due date, so if you submit your work early and realize you
want to update it before it's due, feel free; in this case, please remember to submit all
files again at once.

I will ensure that the assignments are graded in a consistent way between students.

Code will usually, but not always, be graded according to the following categories:

Category Percentage
Weight

Output correct 22%
Testing complete 10%
Classes/methods/variables up to spec 25%
Code incorporates major concepts 35%
Style and clarity 8%

Some labs don't easily break down into these categories; for example, labs 3, 8, 9, and
10 (and possibly more) will just be graded with a particular number of points per
section.

Recommendation: For 2B assignments, I personally find it easiest to print out the
assignments on paper and write all over that paper. It allows you to circle or underline
different things that need to be turned in, mark what you have and haven't completed
so far, etc. When students are struggling to get their thoughts organized on
programming assignments, printing out the assignment on paper is one of my first
suggestions.

Practice questions
Practice questions, due on average 2-3 times per week, give you a chance to try a
piece of code or concept that relates to the prior lecture material, but that is much
smaller in scope than the programming assignments. They are great practice for the
exam and/or for clarifying some details on sections that could be tricky prior to the
programming assignment. Also, they are one of the most popular components of my
courses! Time permitting, we'll work on them together in lecture sessions.

You can submit the answers to the practice questions on Canvas, or have me check
them off in person at the lecture. You may type the answer on Canvas, unless a picture
is required; then upload a photo of the picture you drew. Solutions will be posted on
Canvas, but please check your own answers; I will only spot check the PQs, not
thoroughly grade them.

As we get to coding questions later in the course, you may want to practice
handwriting the code. Why? You will activate a different part of your brain when you
write the answer instead of typing it. You will not rely on the IDE, but instead on your
own knowledge. You will get the opportunity to practice writing code, which is
common practice in software interviews. This last one is important. Trust me, you don't
want your first experience writing code by hand to be during your interview!

Unlike the labs, the PQs are completely open to collaboration, so feel free to work
together or work on them with a tutor at the STEM center. You may even copy the

answer from the book, if you find it there (although I encourage you to try to think of
the answer first). The only requirement is that you actually put down the answer. Turn
them in on time for full credit or late for half credit.

Midterms and final exam
Please plan ahead for the exams. The exams will be scheduled at given day(s) with
flexible windows, but must be taken in one block. The exams cannot be missed; they
are mandatory to pass the course. Furthermore, passing the final is required to pass
the course.

I author my own exams, which is to your advantage; you will have already practiced
questions that the exam author also wrote. The best way to study for the exams is to
make sure you completely understand the practice questions (PQs).You may want
to work together, in the STEM center or virtually, to do the practice problems again to
prep for the exams.

Exams cannot be copied or retained by students. Please note that many other
materials are provided as learning tools; exams are assessment tools. Do not screen
print, print, or otherwise retain copies of any exams. However, if you would like to
review your exam after scoring, please set up an appointment with me, and I'd be glad
to go over your exam with you.

Exams may include an oral component that consists of a short video or in-person chat
in which you will verbally explain your answers to one or more questions. More details
will be sent out at a later date via an announcement.

Regrades
I spend quite a bit of time reading and testing your code and providing you a high-
quality, detailed review. I also give consistent grades across similar programs. For
these reasons, I don't reconsider the number of points awarded based on the error
made. I don't accept regrade requests on the basis that your code works on your
computer, but not on mine.

However, please *do* let me know by email if you ever believe that I haven't seen one
of your files or part of your code, for example, or if there is any ambiguity in the
feedback provided.

NOTE: the official policy of this course is that any regrades, if granted, are subject to a
full regrade, which could result in a lower score. Please send requests by email within
72 hours of a graded item being returned to you.

Questions about feedback

You are always welcome and encouraged to ask questions about the feedback I have
written for your code. Some of the best learning happens during these discussions!

Extraordinary circumstances
Any extraordinary circumstances that interfere with your ability to complete work for
this course will require official documentation.

Academic integrity
Programming assignments should be 100% your own work. Although you are free to
discuss concepts with classmates, you should write up your own solution. Do not
show other classmates your code, and do not look at anyone else's code. Do not send
your code to another student; if they submit the code, neither of you would get credit,
so don't put yourself in this situation. Steer clear of websites where solutions are
provided; posting on these sites, in addition to bypassing your learning process, is
potentially a copyright violation and a crime. No one, including any tutor, should ever
be typing into your code. Your code must have been 100% produced by you.

Do not discuss the exam(s) with anyone. Exams must be taken alone. Retaining a copy
of the exam is a violation of our academic integrity policy.

Any violation of the academic integrity clause of our course may be penalized up to
and including a zero on the assignment and a referral to the dean of students.

I reserve the right to ask you to explain your code.

I diligently screen for matching code between classmates. This should be a relief to
most students: you are working hard to get the work done, and I want to make sure
you are getting the credit you deserve. You may find this surprising, but even within
completely correct code on the same assignment, you all have an individual coding
style, similar to a writing style or speaking style.

On-campus resources
Disability-Related Accommodations
If needed, please contact the Disability Resource Center (Links to an external
site.)Links to an external site. as early as possible by visiting the DRC in room 5400,
emailing the DRC at adaptivelearningdrc@foothill.edu, or calling DRC at 650-949-7017
to make an appointment.

The STEM Center

The STEM center in room 4213 offers free help to all students in
science/math/technology courses and even has a separate Computer Science lab in
room 4204. Please see more information including open hours at the STEM center
website (Links to an external site.)Links to an external site..
We also have online help available during most evenings of the week. You may need to
download a Blackboard program, so allow some extra time for that. Just go to this link
and follow the directions to get through the downloads: Online CS help (Links to an
external site.)Links to an external site.

Although I regularly work in the STEM center, I will need to help students in the order
they arrive (including students from other courses) when I am scheduled there.

Update: I am not scheduled on a regular basis in the STEM center this term due to
budget cuts. However, I will be there for high-volume or substitute days as follows:

CS lab: Monday, January 14 from 5-9 pm

STEM center: Tuesdays March 5, 12, and 19 from noon-5 pm

Psychological Services and Personal Counseling
Many students find themselves in a difficult or stressful time at some point. We are
fortunate to have a great team of counselors (Links to an external site.)Links to an
external site. who can talk with you about whatever you're going through. Please don't
hesitate to contact them.

Questions?
If you have any questions about this course, please don't hesitate to message me and
ask. The intermediate course is a time of growth not only in knowledge, but in general
debugging and coding skills. I'm looking forward to this class, and I hope you enjoy it.

Schedule content
Here is the schedule of content for the course. The lecture pace, number and content
of assignments, and assignment due dates are all subject to changes throughout the
course, as I tailor every course to the unique cohort of students to optimize your
education. Changes are likely to be very minor (e.g., more time needed in lecture on
one topic and less on another).

Week
number

Week start
date Topics

1 1/21/19 OOP review; constructors; const and static; enums; interface vs
implementation; arrays

2 1/28/19 arrays with classes example; initialization section of constructor; linear vs
binary search; strings in C++; binary and hex; cellular automata

3 2/4/19 inheritance; constructor chaining; pass-by
4 2/11/19 overloading; exception handling; pointers; dynamically allocated arrays
5 2/18/19 deep memory methods
6 2/25/19 multidimensional arrays; polymorphism
7 3/4/19 linked lists
8 3/11/19 templates; standard template library
9 3/18/19 trees; tree traversal; file I/O; multiple inheritance
10 3/25/19 review and final

The automated "course summary" below shows all due dates.

Things I'm required to include in this syllabus
Student Learning Outcomes - A successful student will be able to use the C++
environment to define the basic abstract data types (stacks, queues, lists) and iterators
of those types to effectively manipulate the data in his or her program.A successful
student will be able to write and debug C++ programs which make use of inheritance,
i.e., the "is a" relationship, common to all OOP languages. Specifically, the student will
define base and derived classes and use common techniques such as method
chaining in his or her programs.A successful student will be able to define and use C++
templates to make their data and algorithms work with a variety of data types.

Number of credit hours that are considered hybrid per week: 2

Hybrid hours are: lab

Student attendance during hybrid hours is mandatory (this just means that your
programming assignments are a component of the course).

Activities students need to do for hybrid course: programming labs

Course Summary:

Date Details

Thu Jan 24, 2019 Assignment 0: Cards (to get quick feedback) - Optional due by 3pm

Date Details

 Practice question 1 due by 3pm

 Practice question 2 due by 3pm

 Practice question 3 due by 3pm

Mon Jan 28, 2019

 Fill this out to "Attend" the course due by 12pm

 Introduce yourself due by 11:59pm

 Schedule initial meeting with professor due by 11:59pm

Tue Jan 29, 2019 Assignment 1 - Game Basics: Cards and Hands due by 3pm

Thu Jan 31, 2019
 Practice question 4 due by 3pm

 Practice question 5 due by 3pm

Tue Feb 5, 2019 Assignment 3 - Cellular Automata due by 3pm

Thu Feb 7, 2019
 Practice question 6 due by 3pm

 Practice question 7 due by 3pm

Tue Feb 12, 2019
 Assignment 4 - Transactions with inheritance due by 3pm

 Practice question 8 due by 3pm

Thu Feb 14, 2019 Practice question 9 due by 3pm

Sat Feb 16, 2019 Midterm 1 due by 12pm

Tue Feb 19, 2019 Practice question 10 due by 3pm

Wed Feb 20, 2019 Assignment 5 - Complex Arithmetic with Operators due by 3pm

Thu Feb 21, 2019 Practice question 11 due by 3pm

Date Details

Fri Feb 22, 2019 Practice question 12 due by 3pm

Tue Feb 26, 2019 Practice question 13 due by 3pm

Wed Feb 27, 2019 Assignment 6 - Deep Memory Seven Segment Displays due by 3pm

Thu Feb 28, 2019 Practice question 14 due by 3pm

Tue Mar 5, 2019 Practice question 15 due by 3pm

Wed Mar 6, 2019 Assignment 7 - Seven Segment Displays on Consoles due by 3pm

Sat Mar 9, 2019
 Midterm 2 due by 12pm

 Practice question 16 due by 3pm

Tue Mar 12, 2019 Practice question 17 due by 3pm

Thu Mar 14, 2019 Assignment 8 - Soft delete in a Linked List due by 3pm

Fri Mar 15, 2019 Practice question 18 due by 3pm

Tue Mar 19, 2019 Assignment 9 - Managing a Sorted STL List due by 3pm

Thu Mar 21, 2019
 Practice question 19 due by 3pm

 Practice question 20 due by 3pm

Tue Mar 26, 2019 Assignment 10: Trees and templates due by 3pm

Thu Mar 28, 2019 Final exam due by 12pm

Tue Apr 2, 2019 Fall CS 2C survey due by 11:59pm

