Our energy requirements:
 – Energy must be released from food gradually.
 – Energy must be stored in readily accessible forms.
 – The release of energy from storage must be controlled so that it is available exactly when and where it is needed.
 – The right amount of energy must be released as heat to maintain a constant body temperature.
 – Energy in a form other than heat is needed to drive chemical reactions that are not favorable at body temperature.

Photosynthesis: An endothermic reaction that occurs in plants in the formation of glucose. The energy needed for photosynthesis comes from solar energy.

Metabolism: refers to all the chemical reactions that provide energy and the substances required for continued cell growth.
 – Catabolism: The metabolic reactions in which molecules are broken apart. These reactions are exergonic and provide energy.
 – Anabolism: The metabolic reactions in which molecules are built up from smaller pieces. These reactions are endergonic and require energy (usually from ATP).

\[
\begin{align*}
6 \text{CO}_2 + 6 \text{H}_2\text{O} & \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \\
\Delta G &= +686 \text{ kcal/mol} \text{ (endergonic, energy required)} \\
\text{Oxidation} & \quad \Delta G = -686 \text{ kcal/mol} \text{ (exergonic, energy released)}
\end{align*}
\]
Overview of Metabolism

Stage 1. Digestion
Bulk food is digested in the mouth, stomach, and small intestine to yield small molecules.

Stage 2. Acetyl-SCoA Production
Sugar, fatty acid, and amino acid molecules are degraded in the cytoplasm of cells to yield acetyl-SCoA.

Stage 3. Citric Acid Cycle
Acetyl-SCoA is oxidized inside mitochondria by the citric acid cycle to yield CO₂ and reduced coenzymes.

Stage 4. ATP Production
The energy transferred to the reduced coenzymes in stage 3 is used to make ATP by the coupled pathways of electron transport and oxidative phosphorylation.
Digestion of Carbohydrates

- **Dietary carbohydrates** (starch, glycogen, sucrose, lactose)
 - **Mouth**: Salivary α-amylase
 - **Stomach**: Pancreatic α-amylase, maltase, sucrase, lactase
 - **Small intestine**: Monosaccharides
 - **Absorption through small intestine lining**: Monosaccharides in bloodstream
Digestion of Proteins

Dietary protein

Mouth

Stomach HCl and pepsin

Denatured and partially hydrolyzed protein (large polypeptides)

Small intestine Proteases

Amino acids and some dipeptides

Transport across small intestine lining Proteases

Amino acids in bloodstream

Copyright © 2007 Pearson Prentice Hall, Inc.
Digestion of Lipids

- Dietary triacylglycerols
 - Mouth and stomach
 - Undigested, in droplets
 - Small intestine
 - Glycerol and soluble fatty acids enter bloodstream
 - Bile acids and pancreatic lipase
 - Insoluble acylglycerols and fatty acids enter micelles
 - Absorption through small intestine lining
 - Triacylglycerols in chylomicrons
 - Absorption into lymph system
 - Triacylglycerols in chylomicrons
 - Delivery into bloodstream
 - Triacylglycerols in chylomicrons ready for delivery to cells

Copyright © 2007 Pearson Prentice Hall, Inc.