Definition of Limits (Informal)
Let \(f(x) \) be defined on an open interval about \(x_0 \), except at \(x_0 \). If \(f(x) \) gets arbitrarily close to \(L \) for all \(x \) sufficiently close to \(x_0 \), we say that \(f \) approaches the limit \(L \) as \(x \) approaches \(x_0 \), that is
\[
\lim_{x \to x_0} f(x) = L.
\]

Definition of Limits (Formal)
Let \(f(x) \) be defined on an open interval about \(x_0 \), except at \(x_0 \). We claim
\[
\lim_{x \to x_0} f(x) = L,
\]
if, for every number \(\varepsilon > 0 \), there exists a corresponding number \(\delta > 0 \) such that for all \(x \),
\[
0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon.
\]

Definition of One-sided Limits (Formal)
Right-hand limit
Let \(f(x) \) be defined on an open interval about \(x_0 \), except at \(x_0 \). We claim
\[
\lim_{x \to x_0^+} f(x) = L,
\]
if, for every number \(\varepsilon > 0 \), there exists a corresponding number \(\delta > 0 \) such that for all \(x \),
\[
x_0 < x < x_0 + \delta \Rightarrow |f(x) - L| < \varepsilon.
\]
Left-hand limit
Let \(f(x) \) be defined on an open interval about \(x_0 \), except at \(x_0 \). We claim
\[
\lim_{x \to x_0^-} f(x) = L,
\]
if, for every number \(\varepsilon > 0 \), there exists a corresponding number \(\delta > 0 \) such that for all \(x \),
\[
x_0 - \delta < x < x_0 \Rightarrow |f(x) - L| < \varepsilon.
\]

Theorem of Limits
A function \(f(x) \) has a limit as \(x \) approaches \(x_0 \) if and only if it has left-hand and right-hand limits there and these one-sided limits are equal;
\[
\lim_{x \to x_0} f(x) = L \iff \lim_{x \to x_0^-} f(x) = L \land \lim_{x \to x_0^+} f(x) = L.
\]
Definition of limit as x approaches infinities

Positive infinity
\[
\lim_{x \to \infty} f(x) = L, \text{ if,}
\]
for every number $\varepsilon > 0$, there exists a corresponding number M such that for all x,
\[
x > M \Rightarrow |f(x) - L| < \varepsilon.
\]

Negative infinity
\[
\lim_{x \to -\infty} f(x) = L, \text{ if,}
\]
for every number $\varepsilon > 0$, there exists a corresponding number N such that for all x,
\[
x < N \Rightarrow |f(x) - L| < \varepsilon.
\]

Definition of infinite limits

Positive Infinity
\[
\lim_{x \to x_0} f(x) = \infty, \text{ if,}
\]
for every positive real number B, there exists a corresponding $\delta > 0$ such that for all x,
\[
0 < |x - x_0| < \delta \Rightarrow f(x) > B.
\]

Negative Infinity
\[
\lim_{x \to x_0} f(x) = -\infty, \text{ if,}
\]
for every negative real number $-B$, there exists a corresponding $\delta > 0$ such that for all x,
\[
0 < |x - x_0| < \delta \Rightarrow f(x) < -B.
\]

Definition of horizontal asymptotes
A line $y = b$ is defined as a horizontal asymptote of a function $y = f(x)$ if
\[
\lim_{x \to \infty} f(x) = b \lor \lim_{x \to -\infty} f(x) = b
\]

Definition of vertical asymptotes
A line $x = a$ is defined as a vertical asymptote of a function $y = f(x)$ if
\[
\lim_{x \to a^+} f(x) = \pm\infty \lor \lim_{x \to a^-} f(x) = \pm\infty
\]
Test of Continuity
A function $f(x)$ is continuous at $x = x_0$ if and only if it meets all the following conditions.
1. $f(x_0)$ exists
2. $\lim_{x \to x_0} f(x)$ exists
3. $\lim_{x \to x_0} f(x) = f(x_0)$

Note that condition 2 can be checked using the Theorem of Limits mentioned before.

Theorem of Continuity Students often use this theorem without realizing it.
If g is continuous at the point b and $\lim_{x \to c} f(x) = b$, then

$$\lim_{x \to c} g(f(x)) = g(b) = g\left(\lim_{x \to c} f(x)\right)$$

example: $g(x) = x^2$, $f(x) = 3x$, at $c = 3$

$$\lim_{x \to 3} (3x)^2 = (3 \times 3)^2 = \left[\lim_{x \to 3} (3x)\right]^2$$